Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/4259
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Işık, R. | - |
dc.contributor.author | Ekşioğlu, I. | - |
dc.contributor.author | Maral, B. C. | - |
dc.contributor.author | Bardak, B. | - |
dc.contributor.author | Tan, Mehmet | - |
dc.date.accessioned | 2021-04-27T12:43:01Z | - |
dc.date.available | 2021-04-27T12:43:01Z | - |
dc.date.issued | 2020-09 | |
dc.identifier.citation | Işık, R., Ekşioğlu, I., Maral, B. C., Bardak, B., & Tan, M. (2020, October). Chemical Induced Differential Gene Expression Prediction on LINCS Database. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 111-114). IEEE. | en_US |
dc.identifier.isbn | 978-172819574-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/4259 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/abstract/document/9288080 | - |
dc.description.abstract | Understanding the mechanism of action for drugs is vital for drug discovery. Identifying the effect of drugs on gene expression can shed light on the system-side influence of the chemical compounds in biological organisms. In this paper, we propose to use multi-task neural networks to predict chemical induced differential gene expression on cancer cell lines based solely on features of chemicals. Our model predicts differential gene expression identified by a method called Characteristic Direction on a large scale chemical induced gene expression database (LINCS L1000). The results show that the multi-task networks outperform the other single task baselines. We also compare different representations of chemicals and report effect of clustering genes on the prediction performance. © 2020 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings - IEEE 20th International Conference on Bioinformatics and Bioengineering, BIBE 2020 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | IEEE International Conference on Bioinformatics and BioEngineering | en_US |
dc.title | Chemical Induced Differential Gene Expression Prediction on Lincs Database | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Artificial Intelligence Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümü | tr_TR |
dc.relation.tubitak | [118E759] | en_US |
dc.authorid | 0000-0002-1741-0570 | - |
dc.identifier.wos | WOS:000659298300018 | en_US |
dc.identifier.scopus | 2-s2.0-85099586664 | en_US |
dc.institutionauthor | Mehmet Tan | - |
dc.identifier.doi | 10.1109/BIBE50027.2020.00026 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.