Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4259
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIşık, R.-
dc.contributor.authorEkşioğlu, I.-
dc.contributor.authorMaral, B. C.-
dc.contributor.authorBardak, B.-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2021-04-27T12:43:01Z-
dc.date.available2021-04-27T12:43:01Z-
dc.date.issued2020-09
dc.identifier.citationIşık, R., Ekşioğlu, I., Maral, B. C., Bardak, B., & Tan, M. (2020, October). Chemical Induced Differential Gene Expression Prediction on LINCS Database. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 111-114). IEEE.en_US
dc.identifier.isbn978-172819574-2
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4259-
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/9288080-
dc.description.abstractUnderstanding the mechanism of action for drugs is vital for drug discovery. Identifying the effect of drugs on gene expression can shed light on the system-side influence of the chemical compounds in biological organisms. In this paper, we propose to use multi-task neural networks to predict chemical induced differential gene expression on cancer cell lines based solely on features of chemicals. Our model predicts differential gene expression identified by a method called Characteristic Direction on a large scale chemical induced gene expression database (LINCS L1000). The results show that the multi-task networks outperform the other single task baselines. We also compare different representations of chemicals and report effect of clustering genes on the prediction performance. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - IEEE 20th International Conference on Bioinformatics and Bioengineering, BIBE 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIEEE International Conference on Bioinformatics and BioEngineeringen_US
dc.titleChemical Induced Differential Gene Expression Prediction on Lincs Databaseen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Artificial Intelligence Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümütr_TR
dc.relation.tubitak[118E759]en_US
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000659298300018en_US
dc.identifier.scopus2-s2.0-85099586664en_US
dc.institutionauthorMehmet Tan-
dc.identifier.doi10.1109/BIBE50027.2020.00026-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering
Show simple item record



CORE Recommender

Page view(s)

248
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.