Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4189
Title: Bağlamsal Doğrulama İçerisinde Ek Özellik Olarak Klavye Dinamiği Analizi ve Değerlendirilmesi
Other Titles: Analysis and Evaluation of Keystroke Dynamics as a Feature of Contextual Authentication
Authors: Salman, Oğuzhan
Advisors: Selçuk, Ali Aydın
Keywords: Behavioural biometrics
Machine learning
Anomaly detection
Davranışsal biyometri
Yapay zeka
Anomali deteksiyonu
Publisher: TOBB ETÜ Fen Bilimleri Enstitüsü
Source: Salman, O. (2020).Bağlamsal doğrulama içerisinde ek özellik olarak klavye dinamiği analizi ve değerlendirilmesi. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]
Abstract: Tuş Vuruş Dinamikleri, kullanıcının kimliğinin doğruluğuna karar vermek için bireylerin tuş vuruş davranışlarını incelememize yardımcı olan bir davranışsal-biyometri çözümüdür; ancak, bu yaklaşımın dezavantajı, nispeten yüksek yanlış negatif ve yüksek yanlış pozitif oranlara sahip olmasıdır. Bu çalışmada, farklı anomali tespit yaklaşımlarını karşılaştırıyor ve bu çözümleri birleştirdiğimizde performans gelişmelerini inceliyoruz. Önce tuş vuruşu dinamikleri ve oturum bağlamı anomali bileşenlerini ayrı ayrı oluşturduk. Ardından, bu makine öğrenimi bileşenlerinin sonuçlarının nasıl birleştirileceğini inceledik. Deneylerimiz, bu bileşenlerden ağırlıklı ortalama topluluk modelini oluşturmak performansı artırırken, yeni bir özellik olarak oturum bağlam anomali bileşenine tuş vuruşu dinamikleri puanlarını dahil etmek sadece tuş vuruşu dinamiği puanlarını değil, aynı zamanda bu puanlar arasında değişimleri de gözlemleyebildiği için daha iyi performans sağladığını gözlemledik.
Keystroke Dynamics is a behavioural-biometrics solution that helps us to examine individuals' keystroke behaviour to decide legitimacy of the user; however, the drawback of this approach is that it has relatively high false negative and high false positive rates. There are some other anomaly detection approaches which examine more static properties like user's contextual details such as IP address, screensize, browser type etc. to detect legitimacy of the user but these approaches also suffer from false alerts. In this study, we compare different anomaly detection approaches and observe performance improvements when we combine these solutions. We first built keystroke dynamics and session context anomaly components, separately. Then, we examined how to combine the results of these machine learning components. Our experiments showed that while using weighted average ensemble model from these components improved performance, another approach which was to include keystroke dynamics scores in session context anomaly component as a new feature gives the opportunity to capture not only the keystroke dynamics scores but also the deviations of these scores and thus yields better performance.
URI: http://hdl.handle.net/20.500.11851/4189
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses

Files in This Item:
File Description SizeFormat 
655331 (1).pdfOğuzhan Salman_Tez883.47 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

274
checked on Dec 16, 2024

Download(s)

44
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.