Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4039
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorusdağ, Buğra M.-
dc.contributor.authorKutlu, Mücahid-
dc.contributor.authorSelçuk, Ali Aydın-
dc.date.accessioned2021-01-25T11:28:55Z
dc.date.available2021-01-25T11:28:55Z
dc.date.issued2020-09
dc.identifier.citationTorusdağ, M. B., Kutlu, M., and Selçuk, A. A. (2020, September). Are We Secure from Bots? Investigating Vulnerabilities of Botometer. In 2020 5th International Conference on Computer Science and Engineering (UBMK) (pp. 343-348). IEEE.en_US
dc.identifier.isbn978-172817565-2
dc.identifier.urihttps://ieeexplore.ieee.org/document/9219433-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4039-
dc.description.abstractSocial media platforms such as Twitter provide an incredibly efficient way to communicate with people. While these platforms have many benefits, they can also be used for deceiving people, spreading misinformation, manipulation, and harassment. Social bots are usually employed for these kind of activities to artificially increase the amount of a particular post. To mitigate the effects of social bots, many bot detection systems are developed. However, the evaluation of these methods are challenging due to lack limited available datasets and the variety of bots people might develop. In this work, we investigate vulnerabilities of state-of-the-art Botometer social bot detection system by creating our own bot scenarios instead of using public datasets. In our experiments, we show that Botometer is not able to detect our social bots, showing that we need more enhanced bot detection models and test collections to better evaluate systems' performances. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof5th International Conference on Computer Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbotometeren_US
dc.subjectmachine learningen_US
dc.subjectsocial cyber securityen_US
dc.subjectsocial mediaen_US
dc.subjectTwitter Bot Accountsen_US
dc.titleAre We Secure From Bots? Investigating Vulnerabilities of Botometeren_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage343
dc.identifier.endpage348
dc.authorid0000-0002-5660-4992-
dc.authorid0000-0002-8963-1647-
dc.identifier.wosWOS:000629055500067en_US
dc.identifier.scopus2-s2.0-85095689594en_US
dc.institutionauthorKutlu, Mücahid-
dc.institutionauthorSelçuk, Ali Aydın-
dc.identifier.doi10.1109/UBMK50275.2020.9219433-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

6
checked on Nov 9, 2024

Page view(s)

212
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.