Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4032
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArin, Efe-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2021-01-25T11:28:54Z-
dc.date.available2021-01-25T11:28:54Z-
dc.date.issued2022-
dc.identifier.citationArin, E., and Ozbayoglu, A. M. (2020). Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing. Computational Economics, 1-20.en_US
dc.identifier.issn0927-7099-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4032-
dc.identifier.urihttps://link.springer.com/article/10.1007/s10614-020-10063-9-
dc.description.abstractOptions are commonly used by traders and investors for hedging their investments. They also allow the traders to execute leveraged trading opportunities. Meanwhile accurately pricing the intended option is crucial to perform such tasks. The most common technique used in options pricing is Black-Scholes (BS) formula. However, there are slight differences between the BS model output and the actual options price due to the ambiguity in defining the volatility. In this study, we developed hybrid deep learning based options pricing models to achieve better pricing compared to BS. The results indicate that the proposed models can generate more accurate prices for all option classes. Compared with BS using annualized 20 intraday returns as volatility, 94.5% improvement is achieved in option pricing in terms of mean squared error.en_US
dc.language.isoenen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofComputational Economicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOption pricingen_US
dc.subjectComputational intelligenceen_US
dc.subjectDeep neural networksen_US
dc.subjectMachine learningen_US
dc.subjectBlack Scholesen_US
dc.titleDeep Learning Based Hybrid Computational Intelligence Models for Options Pricingen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFaculties, Faculty of Engineering, Department of Artificial Intelligence Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.departmentFakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümütr_TR
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/EEEAG/215E248en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000585155100001en_US
dc.identifier.scopus2-s2.0-85094903719en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1007/s10614-020-10063-9-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Oct 5, 2024

Page view(s)

402
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.