Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3966
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorÖzbayoğlu, Mehmet Evren-
dc.contributor.authorÖzbayoğlu, Gülhan-
dc.date.accessioned2021-01-18T06:01:53Z-
dc.date.available2021-01-18T06:01:53Z-
dc.date.issued2012-09-
dc.identifier.citationOzbayoglu, A.M., Ozbayoglu, M.E. and Ozbayoglu, G., “Comparison of Gross Calorific Value Estimation of Turkish Coals using Regression and Neural Networks Techniques”, XXVIth International Mineral Processing Congress (IMPC 2012), Paper No: 420, pp. 4011-4023, Yeni Delhi, Hindistan, 24-28 Eylül, 2012.en_US
dc.identifier.isbn8190171437-
dc.identifier.isbn978-819017143-4-
dc.identifier.urihttp://www.impc-council.com/IMPC_2012_Proceedings_INDIA.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3966-
dc.description26th International Mineral Processing Congress, IMPC (2012 : New Delhi; India)en_US
dc.description.abstractGross calorific value (GCV) of coals was estimated using artificial neural networks, linear and non- linear regression techniques. Proximate and ultimate analysis results were collected for 187 different coal samples. Different input data sets were compared, such as both proximate and ultimate analysis data, and only proximate analysis data and only ultimate analysis data. It was observed that the best results were obtained when both proximate analysis and ultimate analysis results were used for estimating the gross calorific value. When the performance of artificial neural networks and regression analysis techniques were compared, it was observed that both artificial neural networks and regression techniques were promisingly accurate in estimating gross calorific values. In general, most of the models estimated the gross calorific value within ±3% of the expected value.en_US
dc.language.isoenen_US
dc.publisherMetso,Vale,Tata Steel,ESSAR STEEL,TATA CONSULTANCY SERVICEen_US
dc.relation.ispartofXXVIth International Mineral Processing Congress (IMPC 2012)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectlignitesen_US
dc.subjectgross calorific valueen_US
dc.subjectproximate analysisen_US
dc.subjectultimate analysisen_US
dc.subjectregressionen_US
dc.subjectneural networksen_US
dc.titleComparison of Gross Calorific Value Estimation of Turkish Coals Using Regression and Neural Networks Techniquesen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage4011en_US
dc.identifier.endpage4023en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.scopus2-s2.0-84879950552en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Ozbayoglu_420.pdf1.21 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

184
checked on Dec 16, 2024

Download(s)

76
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


This item is licensed under a Creative Commons License Creative Commons