Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/3929
Title: | Uçak Kanadı Üzerinde Deformasyondan Dolayı Değişen Yük Dağılımının Hesaplanması için Bir Parametrik Modelleme Yönteminin Geliştirilmesi | Other Titles: | A Parametric Modeling Approach for Prediction of Load Distribution Due To Fluid Structure Interaction on Aircraft Structures | Authors: | Barutçu, Ahmet | Advisors: | Görgülüarslan, Recep Muhammet | Keywords: | Fluid-structure interaction Bezier surface modeling Aerodynamic influence coefficient matrix Aeroelasticity Multy-physics Akışkan-yapı etkileşimi Bezier yüzey modelleme Aerodinamik etkileşim katsayıları matrisi Aeroelastisite, Multi-fizik |
Source: | Barutçu, A. (2020). Uçak kanadı üzerinde deformasyondan dolayı değişen yük dağılımının hesaplanması için bir parametrik modelleme yönteminin geliştirilmesi. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi] | Abstract: | Akışkan-Yapı Etkileşimi etkisi havacılık uygulamalarında incelenen önemli konulardan biridir. Rijit olmayan yapıların, yapı etrafındaki hava hareketlerinin oluşturduğu yükten dolayı şekli değişmektedir. Şekil değişimi ise yapı etrafındaki hava hareketlerini doğrudan etkilemektedir. Uçak için akışkan-yapı etkileşimi düşünüldüğünde uçak kanadı için bu etkinin incelenmesi gerekmektedir. Çünkü uçak kanadı uçağın ana taşıyıcı elemanıdır ve esnek bir yapıya sahiptir. Uçak kanadı üzerindeki şekil değişimi, akışkan-yapı etkileşiminden meydana gelmektedir. Akışkan-yapı etkileşimi etkisinin hesaplamalara dâhil edilmesi yüksek hesaplama maliyeti gerektirir. Bu tez çalışmasında bir uçak kanadı üzerinde deformasyondan dolayı değişen yük dağılımının tekrar hesaplanması için parametrik bir yöntem geliştirilerek etkin bir biçimde sonuca ulaşılması gösterilmektedir. Çalışmanın temeli hızlı ve etkili bir sonuç almak olduğu için akışkan ve yapısal analiz kısımlarında ayrı ayrı basitleştirmeler yapılmıştır. Yüksek çözünürlüğe sahip yapısal model çok daha basit bir yapı olan çubuk modele yapının özellikleri de korunarak indirgenmiştir. Böylece belli bir yük altında yapının şekil değişimi hızlıca tahmin edilebilmektedir. Akışkan analizlerinde ise yüksek hesaplama maliyeti olan Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemleri kullanmak yerine doğrusal aerodinamik varsayımından yararlanılarak kanat üzerindeki basınç katsayısı dağılımı ve buna bağlı yük tahmini yapılmıştır. Doğrusal aerodinamik varsayımı için 'Aerodinamik Etkileşim Katsayıları (Aerodynamic Influence Coefficient (AIC))' matrisi kullanılmıştır. Bu matris şekil değişim bilgisine karşılık gelen basınç katsayısı değişim bilgisini içermektedir. Parametrik yüzey modelleme yöntemlerinden biri olan Bezier yüzey fonksiyonları yardımıyla AIC matrisi oluşturulmuştur. Uçak kanadı dış yüzeyi bu amaç için Bezier yüzey modelleme yöntemi kullanılarak oluşturulmuştur. Yüzey oluşturulurken kullanılan kontrol noktaları (control vertices (CVs)) deforme olmuş yapının yük dağılımını tahmin etmek için kullanılır. Her bir kontrol noktasının bir birim yer değiştirmesine karşılık gelen değişen yük dağılımı bilgisi AIC matrisi içinde birleştirilir. Bu yöntemin en büyük avantajı yüzey üzerindeki tüm noktalara belirli yer değiştirme değeri uygulamak yerine çok daha az sayıdaki kontrol noktalarına yer değiştirme değeri uygulanmasıdır. Ayrıca kontrol noktalarının yer değiştirmesi pürüzsüz bir şekil değişimi olmuş yüzey elde edilmesini de sağlamaktadır. Bu sayede hesaplama maliyeti yüksek olan akışkan analizi yapmak yerine parametrik modelleme yaklaşımı ile AIC matrisi oluşturulup uçak kanadı üzerindeki değişen yük bilgisi hızlı ve etkili bir biçimde tahmin edilebilmektedir. Daha basit modele indirgenmiş yapısal modelden elde edilen şekil değişim bilgisi kontrol noktaları üzerine aktarılarak şekil değişimine uğramış uçak kanadının yüzeyi Bezier yüzey fonksiyonları ile elde edilir. Kontrol noktalarının yeni konumu AIC matrisi ile ilişkilendirildiğinde uçak kanadı üzerindeki değişen yük dağılımı elde edilir. Bu çalışmada kullanılan yöntemler, bir uçağın ön tasarım aşamasında veya iteratif olarak yapılan aeroelastik analizler için hızlı ve etkili bir biçimde sonuca ulaşılmak istendiğinde kullanılabilir. Ayrıca önerilen metodun kullanımı sadece uçak kanadı için değil akışkan-yapı etkileşimi olan diğer yapıları da kapsamaktadır. The Fluid Structure Interaction effect is one of the crucial issues to be examined in aerospace applications. The shape of a flexible structure changes due to the load caused by the air flow around the structure. The deformations directly affect the air flow around the structure. Considering the fluid-structure interaction for aircraft, this effect should be examined for the aircraft wing since the wing produces the majority of the necessity lift and it is flexible. Deformation on the aircraft wing consists of this effect. The incorporation of the fluid-structure interaction effect into the calculations requires a high computional cost. In this thesis, a parametric method is developed to recalculate the load distribution due to the deformation on an aircraft wing. As the basis of the study is to obtain a faster and effective results, the simplification of the part of fluid flow and structural analysis are done seperately. The high-fidelity structural model is reduced to a much simpler structure, i.e. to a stick model, while preserving its properties. Thus, the deformed state of the structure under a certain load can be estimated quickly. In the part of fluid flow analysis, instead of using Computational Fluid Dynamics (CFD), which has a high computational cost, a linear aerodynamic assumption, called the Aerodynamic Influence Coefficients (AIC) matri, is used to estimate the pressure distribution on the wing and the associated load. This matrix includes the information of the pressure change corresponding to the deformation. The AIC matrix is created with the help of the Bezier surface functions which is one of the parametric surface modeling methods. The outer surface of the aircraft wing is generated using the Bezier surface modeling method for this purpose. The control vertices (CVs) of the generated surface are used to estimate the load distribution of the deformed shape. The distribution of the load change corresponding to each control vertex per unit perturbance value is combined in the AIC matrix. The major advantage of this method is that it deforms a few control vertices rather than deforming all points on the surface, thus mitigating the computational cost. In addition, the deformation of the CVs results in a smooth deformed surface. Thus, the AIC matrix can be generated with the parametric modeling approach instead of the analysis with high computational cost and the load change information on the aircraft wing can be estimated quickly and effectively. The deformation information obtained from the reduced structural model is transferred to the CVs and the surface of the deformed aircraft wing is obtained by the Bezier curves. The distribution of the load change on the aircraft wing is obtained when the new position of the control points is associated with the AIC matrix. The methods used in this study can be used in the preliminary design stage of an aircraft or when iterative solutions are requested to achieve a faster and effective result for aeroelastic analysis. In addition, although the use of the proposed method is shown for an aircraft wing example in this thesis, it can also be used for other structures which involve the fluid-structure interaction effect. |
URI: | https://hdl.handle.net/20.500.11851/3929 |
Appears in Collections: | Makine Mühendisliği Yüksek Lisans Tezleri / Mechanical Engineering Master Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
627579.pdf | Ahmet Barutçu_Tez | 6.36 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
312
checked on Dec 16, 2024
Download(s)
200
checked on Dec 16, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.