Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3891
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, Çağla-
dc.contributor.authorYetik, İmam Şamil-
dc.date.accessioned2020-10-22T16:46:30Z-
dc.date.available2020-10-22T16:46:30Z-
dc.date.issued2020-01
dc.identifier.citationŞahin, Ç. and Yetik, İ. Ş. (2020) A New Navigation System for Unmanned Aerial Vehicles in Global Positioning System-Denied Environments Based On Image Registration with Mutual Information and Deep Learning. Institute of Navigation.en_US
dc.identifier.isbn0936406240
dc.identifier.isbn978-093640624-4
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3891-
dc.identifier.urihttps://www.ion.org/publications/abstract.cfm?articleID=17203-
dc.description.abstractIn this paper, we develop an alternative navigation system for Unmanned Aerial Vehicle (UAV) in Global Positioning Systems (GPS)-denied environment. We use two image inputs, one is acquired with an on-board camera placed on the UAV (which is the large-area image) and the other is from satellite images (which is small known image) with GPS information. We use a convolutional neural network (CNN) architecture based on Oxford's Visual Geometry Group network (VGG-16) and utilize normalized variant mutual information between these two images to obtain position of the UAV. Satellite images are labelled and given to the UAV. When GPS information is lost, our algorithm starts to function and images from UAV camera are searched whether satellite image is seen by cameras on UAV image or not. If the UAV is in that area, our algorithm finds the GPS information from satellite image data. © 2020 ION 2020 International Technical Meeting Proceedings. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitute of Navigationen_US
dc.relation.ispartofION 2020 International Technical Meeting Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSimultaneous Localization and Mapping en_US
dc.subject Ostdeutscher Rundfunk Brandenburg en_US
dc.subject Pose Estimationen_US
dc.titleA New Navigation System for Unmanned Aerial Vehicles in Global Positioning System-Denied Environments Based on Image Registration With Mutual Information and Deep Learningen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage1127
dc.identifier.endpage1134
dc.authorid0000-0002-7330-4692-
dc.identifier.wosWOS:000544820300080en_US
dc.identifier.scopus2-s2.0-85082486199en_US
dc.institutionauthorYetik, Imam Şamil-
dc.identifier.doi10.33012/2020.17203-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

84
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.