Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3862
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSezginer, Kaan-
dc.contributor.authorKasnakoğlu, Coşku-
dc.date.accessioned2020-10-22T16:46:27Z-
dc.date.available2020-10-22T16:46:27Z-
dc.date.issued2019-11
dc.identifier.citationSezginer, K., & Kasnakoğlu, C. (2019). Autonomous Navigation of an Aircraft Using a NARX Recurrent Neural Network. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 895-899). IEEE.en_US
dc.identifier.isbn978-605011275-7
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3862-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8990584-
dc.description.abstractThis paper explores autonomous aircraft navigation using machine learning approach focusing on the ground run and takeoff which is one of the most critical control problems in the aircraft navigation. A controller which controls the aircraft during the takeoff is designed as a black-box method focusing on the input-output relationship between the flight data and control commands. The controller is modelled using the time-series relationship among the data realizing a recurrent neural network (RNN) with the nonlinear autoregressive network with exogenous inputs (NARX) architecture. The flight data are acquired from pilot experiences in the X-Plane flight simulator. Furthermore, the modelling of the controller is constituted using these experiences. This paper also discusses the takeoff performance of the controller network in clean weather conditions that includes additional wind layers at various altitudes. The simulation results establish a satisfactory flight performance of controlling the aircraft in a smooth and stable manner. © 2019 Chamber of Turkish Electrical Engineers.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofELECO 2019 - 11th International Conference on Electrical and Electronics Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHelicopters en_US
dc.subject attitude control en_US
dc.subject backsteppingen_US
dc.titleAutonomous Navigation of an Aircraft Using a NARX Recurrent Neural Networken_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.startpage895
dc.identifier.endpage899
dc.authorid0000-0002-9928-727X-
dc.identifier.wosWOS:000552654100180en_US
dc.identifier.scopus2-s2.0-85080905948en_US
dc.institutionauthorKasnakoğlu, Coşku-
dc.identifier.doi10.23919/ELECO47770.2019.8990584-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 9, 2024

Page view(s)

80
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.