Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3847
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksac, A.-
dc.contributor.authorOzyer, T.-
dc.contributor.authorAlhajj, R.-
dc.date.accessioned2020-10-22T16:40:34Z-
dc.date.available2020-10-22T16:40:34Z-
dc.date.issued2020-
dc.identifier.citationAksac, A., Ozyer, T. and Alhajj, R. (2020). Data on cut-edge for spatial clustering based on proximity graphs. Data in brief, 28, 104899.en_US
dc.identifier.issn2352-3409-
dc.identifier.urihttps://doi.org/10.1016/j.dib.2019.104899-
dc.description.abstractCluster analysis plays a significant role regarding automating such a knowledge discovery process in spatial data mining. A good clustering algorithm supports two essential conditions, namely high intra-cluster similarity and low inter-cluster similarity. Maximized intra-cluster/within-cluster similarity produces low distances between data points inside the same cluster. However, minimized inter-cluster/between-cluster similarity increases the distance between data points in different clusters by furthering them apart from each other. We previously presented a spatial clustering algorithm, abbreviated CutESC (Cut-Edge for Spatial Clustering) with a graph-based approach. The data presented in this article is related to and supportive to the research paper entitled “CutESC: Cutting edge spatial clustering technique based on proximity graphs” (Aksac et al., 2019) [1], where interpretation research data presented here is available. In this article, we share the parametric version of our algorithm named CutESC-P, the best parameter settings for the experiments, the additional analyses and some additional information related to the proposed algorithm (CutESC) in [1]. © 2019en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofData in Briefen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClusteringen_US
dc.subjectGraph Theoryen_US
dc.subjectProximity Graphsen_US
dc.subjectSpatial Data Miningen_US
dc.titleData on Cut-Edge for Spatial Clustering Based on Proximity Graphsen_US
dc.typeData Paperen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume28en_US
dc.authorid0000-0002-2529-5533-
dc.identifier.wosWOS:000520402100091-
dc.identifier.scopus2-s2.0-85076525153-
dc.institutionauthorÖzyer, Tansel-
dc.identifier.pmid31890778-
dc.identifier.doi10.1016/j.dib.2019.104899-
dc.authorscopusid37101194700-
dc.authorscopusid8914139000-
dc.authorscopusid7004187647-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityN/A-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeData Paper-
item.grantfulltextopen-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Veri Makaleleri / Data Papers
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering
Files in This Item:
File Description SizeFormat 
ozyer-tansel-data.pdf1.16 MBAdobe PDFThumbnail
View/Open
1-s2.0-S2352340919312545-main.pdf1.16 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

2
checked on Mar 22, 2025

Page view(s)

444
checked on Mar 31, 2025

Download(s)

146
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.