Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSert, Onur Can-
dc.contributor.authorŞahin, Salih Doruk-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2020-10-22T16:40:34Z
dc.date.available2020-10-22T16:40:34Z
dc.date.issued2020-05
dc.identifier.citationSert, O. C., Şahin, S. D., Özyer, T. and Alhajj, R. (2020). Analysis and prediction in sparse and high dimensional text data: The case of Dow Jones stock market. Physica A: Statistical Mechanics and its Applications, 545, 123752.en_US
dc.identifier.issn0378-4371
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0378437119320904?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3846-
dc.description.abstractIn this research, we proposed a text analysis system to predict stock market movements using news and social media data. It is a scalable prediction system for sparse and high dimensional feature sets. Using the developed system, we collected 12,560 articles from New York Times covering one year time period, and 2,854,333 tweets from Twitter covering 4 months time period. We analysed the collected data using entity extraction, sentiment analysis and topic modelling techniques. We applied our feature set creation and elastic net regression based training method. The analyses have been used to train different prediction models. Using these trained prediction models, we predicted stock market movements for Dow Jones Index and showed that the proposed method can make promising predictions. In different sets of experiments, highly accurate (up to 70.90% accuracy) predictions are made by the proposed approach. These predicted values also correlated (up to 0.2315 correlation coefficient value) with real Dow Jones Index values. Further, we report performance comparison results for various prediction models that we trained with different set of features to analyse the importance of time interval and feature space size. Our test results show that it is possible to make reasonable stock movement prediction by integrating news and related social media data, analysing them using named entity extraction, sentiment analysis and topic modelling techniques together with prediction models which use features that are created from these analysis results. (C) 2019 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofPhysica A: Statistical Mechanics and its Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNamed entity recognitionen_US
dc.subjecttopic modellingen_US
dc.subjectsentiment analysisen_US
dc.subjectsocial network analysisen_US
dc.subjectstock market movement predictionen_US
dc.subjectmsaeneten_US
dc.titleAnalysis and Prediction in Sparse and High Dimensional Text Data: the Case of Dow Jones Stock Marketen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFaculties, Faculty of Engineering, Department of Artificial Intelligence Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.departmentFakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümütr_TR
dc.identifier.volume545
dc.authorid0000-0002-2529-5533-
dc.identifier.wosWOS:000526845600009en_US
dc.identifier.scopus2-s2.0-85077717729en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1016/j.physa.2019.123752-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Yapay Zeka Mühendisliği Bölümü / Department of Artificial Intelligence Engineering
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

11
checked on Dec 21, 2024

Page view(s)

256
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.