Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3490
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKılıç, Emrah-
dc.contributor.authorErsanlı, Didem-
dc.date.accessioned2020-04-27T12:55:04Z
dc.date.available2020-04-27T12:55:04Z
dc.date.issued2019
dc.identifier.citationErsanlı, D. (2019). Lineer indirgeme dizilerinin bazı ters toplamlarının hesaplanması. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3490-
dc.description.abstractBu tezde, $U_{0}=0$, $U_{1}=1$ ve $V_{0}=2$, $V_{1}=p$ başlangıç koşulları olmak üzere her $n\ge{2}$ için \begin{equation*} U_{n}=pU_{n-1}+rU_{n-2}\text{ ve }V_{n}=pV_{n-1}+rV_{n-2}, \end{equation*}% kuralları ile tanımlanan ikinci basamaktan lineer homojen indirgeme dizileri $\lbrace U_{n}\rbrace$ ve $\lbrace V_{n}\rbrace$ ile çalışacağız. Bu dizilerin terimlerini ihtiva eden aşağıdaki ters toplamları hesaplayacağız: \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{V_{k+d+1}}{U_{k+d}U_{k+d+1}U_{k+d+2}}\text{ \ \ \ \ ,\ \ \ \ }\sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k-d}}{U_{k+d}U_{k+d+1}U_{k+d+2}} \end{equation*} ve $X_{n}$, $U_{n}$ ya da $V_{n}$ olmak üzere \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k+c}U_{k+c+1}\ldots U_{k+c+m-1}}{ X_{k+d}X_{k+d+1}\ldots X_{k+d+m+1}}. \end{equation*}tr_TR
dc.description.abstractIn this thesis, we will consider second order linear homogeneous recurrences $\lbrace U_{n}\rbrace$ and $\lbrace V_{n}\rbrace$ defined by the rules for $n\ge{2}$ \begin{equation*} U_{n}=pU_{n-1}+rU_{n-2}\text{ and }V_{n}=pV_{n-1}+rV_{n-2}, \end{equation*}% where the initial conditions $U_{0}=0$, $U_{1}=1$ and $V_{0}=2$, $V_{1}=p$, respectively. We will evaluate the following reciprocal sums including terms of these sequences \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{V_{k+d+1}}{U_{k+d}U_{k+d+1}U_{k+d+2}}\text{ \ \ \ \ ,\ \ \ \ \ }\sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k-d}}{U_{k+d}U_{k+d+1}U_{k+d+2}} \end{equation*} and \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k+c}U_{k+c+1}\ldots U_{k+c+m-1}}{ X_{k+d}X_{k+d+1}\ldots X_{k+d+m+1}} \end{equation*} where $X_{n}$ is $U_{n}$ or $V_{n}$.en_US
dc.language.isotren_US
dc.publisherTOBB University of Economics and Technology,Graduate School of Engineering and Scienceen_US
dc.publisherTOBB ETÜ Fen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectReciprocal sums identitiesen_US
dc.subjectq-Calculusen_US
dc.subjectPartial fraction decompositionen_US
dc.subjectTelescobing ideaen_US
dc.subjectTers toplamlartr_TR
dc.subjectq-Analiztr_TR
dc.subjectBasit kesirlere ayırma yöntemitr_TR
dc.subjectTeleskop yaratmatr_TR
dc.titleLineer İndirgeme Dizilerinin Bazı Ters Toplamlarının Hesaplanmasıen_US
dc.title.alternativeEvaluation for Certain Reciprocal Sums of Linear Recurrencesequencesen_US
dc.typeMaster Thesisen_US
dc.departmentInstitutes, Graduate School of Engineering and Science, Mathematics Graduate Programsen_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Matematik Ana Bilim Dalıtr_TR
dc.relation.publicationcategoryTezen_US
item.openairetypeMaster Thesis-
item.languageiso639-1tr-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Yüksek Lisans Tezleri / Mathematics Master Theses
Files in This Item:
File Description SizeFormat 
575694 (1).pdfDidem Ersanlı_Tez1.51 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

320
checked on Dec 16, 2024

Download(s)

90
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.