Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3490
Title: Lineer İndirgeme Dizilerinin Bazı Ters Toplamlarının Hesaplanması
Other Titles: Evaluation for Certain Reciprocal Sums of Linear Recurrencesequences
Authors: Ersanlı, Didem
Advisors: Kılıç, Emrah
Keywords: Reciprocal sums identities
q-Calculus
Partial fraction decomposition
Telescobing idea
Ters toplamlar
q-Analiz
Basit kesirlere ayırma yöntemi
Teleskop yaratma
Publisher: TOBB University of Economics and Technology,Graduate School of Engineering and Science
TOBB ETÜ Fen Bilimleri Enstitüsü
Source: Ersanlı, D. (2019). Lineer indirgeme dizilerinin bazı ters toplamlarının hesaplanması. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]
Abstract: Bu tezde, $U_{0}=0$, $U_{1}=1$ ve $V_{0}=2$, $V_{1}=p$ başlangıç koşulları olmak üzere her $n\ge{2}$ için \begin{equation*} U_{n}=pU_{n-1}+rU_{n-2}\text{ ve }V_{n}=pV_{n-1}+rV_{n-2}, \end{equation*}% kuralları ile tanımlanan ikinci basamaktan lineer homojen indirgeme dizileri $\lbrace U_{n}\rbrace$ ve $\lbrace V_{n}\rbrace$ ile çalışacağız. Bu dizilerin terimlerini ihtiva eden aşağıdaki ters toplamları hesaplayacağız: \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{V_{k+d+1}}{U_{k+d}U_{k+d+1}U_{k+d+2}}\text{ \ \ \ \ ,\ \ \ \ }\sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k-d}}{U_{k+d}U_{k+d+1}U_{k+d+2}} \end{equation*} ve $X_{n}$, $U_{n}$ ya da $V_{n}$ olmak üzere \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k+c}U_{k+c+1}\ldots U_{k+c+m-1}}{ X_{k+d}X_{k+d+1}\ldots X_{k+d+m+1}}. \end{equation*}
In this thesis, we will consider second order linear homogeneous recurrences $\lbrace U_{n}\rbrace$ and $\lbrace V_{n}\rbrace$ defined by the rules for $n\ge{2}$ \begin{equation*} U_{n}=pU_{n-1}+rU_{n-2}\text{ and }V_{n}=pV_{n-1}+rV_{n-2}, \end{equation*}% where the initial conditions $U_{0}=0$, $U_{1}=1$ and $V_{0}=2$, $V_{1}=p$, respectively. We will evaluate the following reciprocal sums including terms of these sequences \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{V_{k+d+1}}{U_{k+d}U_{k+d+1}U_{k+d+2}}\text{ \ \ \ \ ,\ \ \ \ \ }\sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k-d}}{U_{k+d}U_{k+d+1}U_{k+d+2}} \end{equation*} and \begin{equation*} \sum\limits_{k=0}^{n}(-r)^{k}\frac{U_{k+c}U_{k+c+1}\ldots U_{k+c+m-1}}{ X_{k+d}X_{k+d+1}\ldots X_{k+d+m+1}} \end{equation*} where $X_{n}$ is $U_{n}$ or $V_{n}$.
URI: https://hdl.handle.net/20.500.11851/3490
Appears in Collections:Matematik Yüksek Lisans Tezleri / Mathematics Master Theses

Files in This Item:
File Description SizeFormat 
575694 (1).pdfDidem Ersanlı_Tez1.51 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

320
checked on Dec 16, 2024

Download(s)

90
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.