Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3265
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDingeç, Kemal Dinçer-
dc.contributor.authorAlexopoulos, Christos-
dc.contributor.authorGoldsman, David-
dc.contributor.authorMeterelliyoz Kuyzu, Melike-
dc.contributor.authorWilson, James R.-
dc.date.accessioned2020-01-27T06:41:29Z-
dc.date.available2020-01-27T06:41:29Z-
dc.date.issued2018-
dc.identifier.citationDingeç, K. D., Alexopoulos, C., Goldsman, D., Meterelliyoz, M., & Wilson, J. R. (2018, December). Multiply reflected variance estimators for simulation. In 2018 Winter Simulation Conference (WSC) (pp. 1670-1681). IEEE.en_US
dc.identifier.issn0891-7736-
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/8632554-
dc.identifier.uri10.1109/WSC.2018.8632554-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3265-
dc.description.abstractIn a previous article, we studied a then-new class of standardized time series (STS) estimators for the asymptotic variance parameter of a stationary simulation output process. Those estimators invoke the well-known reflection principle of Brownian motion on the suitably standardized original output process to compute several "reflected" realizations of the STS, each of which is based on a single reflection point. We then calculated variance-and mean-squared-error-optimal linear combinations of the estimators formed from the singly reflected realizations. The current paper repeats the exercise except that we now examine the efficacy of employing multiple reflection points on each reflected realization of the STS. This scheme provides additional flexibility that can be exploited to produce estimators that are superior to their single-reflection-point predecessors with respect to mean-squared error. We illustrate the enhanced performance of the multiply reflected estimators via exact calculations and Monte Carlo experiments.en_US
dc.description.sponsorshipNational Science FoundationNational Science Foundation (NSF) [CMMI-1232998/1233141]-
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer Science, Theory & Methodsen_US
dc.titleMultiply Reflected Variance Estimators for Simulationen_US
dc.typeConference Objecten_US
dc.relation.ispartofseries2018 WINTER SIMULATION CONFERENCE (WSC)en_US
dc.departmentFaculties, Faculty of Economics and Administrative Sciences, Department of Managementen_US
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümütr_TR
dc.identifier.startpage1670-
dc.identifier.endpage1681-
dc.identifier.wosWOS:000461414101074en_US
dc.identifier.scopus2-s2.0-85062628576en_US
dc.institutionauthorMeterelliyoz, Melike-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept04.03. Department of Management-
Appears in Collections:İşletme Bölümü / Department of Management
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

168
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.