Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/321
Title: Semantik Web ile Geliştirilen Bir Televizyon Program Öneri Sistemi
Other Titles: A television program recommendation system using semantic web
Authors: Battal, Abdullah
Advisors: Doğdu, Erdoğan
Keywords: Televizyon / Television
Öneri sistemi / Recommender system
Internet
Web 3.0
Semantik web / Semantic web
Publisher: TOBB Ekonomi ve Teknoloji Üniversitesi - Fen Bilimleri Enstitüsü - Bilgisayar Mühendisliği Bölümü
Abstract: Semantic web technologies are of the most important technologies that are gaining popularity in academic and industrial society and expected to become widespread. By way of using semantic web technologies, the data on the web will not be just human readable documents, but it will be in a form that allows computers to understand the connections between data and find out new connections built upon existing ones by inference mechanisms. Television broadcasters can also employ semantic web technologies to provide new and highly personalized television experiences to their viewers and the whole world. Viewers could get personalized TV program recommendations or commercial advertisements via web clients, thin clients or clients that run directly on TV screen. In this thesis, a web client software is developed for retrieving The Turkish Radio and Television Broadcasting Institution's (TRT) television broadcast listing semantically on the web and provide personalized recommendations to viewers.
Semantik web teknolojileri günümüzde akademik ve endüstriyel çevrelerde popülerliği artan ve gelecekte yaygınlaşması beklenilen en önemli teknolojilerden biridir. Semantik web teknolojilerinin kullanımıyla internet ortamındaki veriler salt insanların yorumlayabileceği dokümanlarda bulunmaktan çıkacak ve bilgisayarların veriler arasındaki bağlantıları anlayıp üzerinde yorum yaparak farklı bağlantıları ortaya çıkarabileceği bir biçime ulaşacaktır. Televizyon kuruluşları da semantik web teknolojilerinden yararlanarak kullanıcılarına ve tüm dünyaya yeni ve yüksek oranda kişiselleştirilmiş televizyon izleme tecrübeleri sunabilirler. İzleyicilere sunulacak web istemcileri, ince istemciler veya doğrudan TV ekranında çalışabilecek istemciler kullanılarak kişiselleştirilmiş TV programı tavsiye sistemleri sunulabilir veya izleyiciye özel reklam yayını yapılabilir. Bu tez çalışmasında Türkiye Radyo ve Televizyon Kurumu'nun (TRT) yayın akışının semantik web ortamında girilip değiştirilmesine olanak tanımak ve izleyiciler için program tavsiyesinde bulunmak üzere bir web istemcisi projesi geliştirilmiştir. Semantic web technologies are of the most important technologies that are gaining popularity in academic and industrial society and expected to become widespread. By way of using semantic web technologies, the data on the web will not be just human readable documents, but it will be in a form that allows computers to understand the connections between data and find out new connections built upon existing ones by inference mechanisms. Television broadcasters can also employ semantic web technologies to provide new and highly personalized television experiences to their viewers and the whole world. Viewers could get personalized TV program recommendations or commercial advertisements via web clients, thin clients or clients that run directly on TV screen. In this thesis, a web client software is developed for retrieving The Turkish Radio and Television Broadcasting Institution's (TRT) television broadcast listing semantically on the web and provide personalized recommendations to viewers.
URI: https://hdl.handle.net/20.500.11851/321
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses

Files in This Item:
File Description SizeFormat 
TZ00087.pdf1.05 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

180
checked on Dec 23, 2024

Download(s)

94
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.