Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2874
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcKeand, A. M.-
dc.contributor.authorGörgülüarslan, Recep Muhammed-
dc.contributor.authorBrown, J.-
dc.contributor.authorChoi, S. K.-
dc.date.accessioned2019-12-25T14:04:30Z-
dc.date.available2019-12-25T14:04:30Z-
dc.date.issued2019-08
dc.identifier.citationMcKeand, A. M., Gorguluarslan, R. M., Brown, J., and Choi, S. K. (2019). Multiscale Modeling of Turbine Engine Component under Manufacturing Uncertainty. Journal of Computing and Information Science in Engineering, 19(4).en_US
dc.identifier.issn1530-9827
dc.identifier.issn1944-7078
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2874-
dc.identifier.urihttps://asmedigitalcollection.asme.org/computingengineering/article/19/4/041017/955169/Multiscale-Modeling-of-Turbine-Engine-Component-
dc.description.abstractEfficient modeling of uncertainty introduced by the manufacturing process is critical in the design of turbine engine components. In this study, a stochastic multiscale modeling framework is developed to efficiently account for the geometric uncertainty associated with the manufacturing process to accurately predict the performance of engine components. Multiple efficient statistic tools are integrated into the proposed framework. Specifically, a semivariogram analysis procedure is proposed to quantify spatial variability of the uncertain geometric parameters based on a set of manufactured specimens. Karhunen–Loeve expansion is utilized to create a set of correlated random variables from the uncertainty data obtained by variogram analysis. A detailed finite element model of the component is created that accounts for the uncertainties quantified by these correlated random variables. A stochastic upscaling method is then developed to form a simplified model that can represent this detailed model with high accuracy under uncertainties. Specifically, a parametric model generation process is developed to represent the detailed model using Bezier curves and the uncertainties are upscaled to the parameters of this parametric representation. The results of the simulations are then validated with real experimental results. The application results show that the proposed framework effectively captures the geometric uncertainties introduced by manufacturing while providing accurate predictions under uncertainties.en_US
dc.language.isoenen_US
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_US
dc.relation.ispartofJournal of Computing and Information Science in Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGas turbinesen_US
dc.subjectmanufacturingen_US
dc.subjectmultiscale modelingen_US
dc.subjectuncertaintyen_US
dc.subjectdesignen_US
dc.subjectenginesen_US
dc.subjectfinite element modelen_US
dc.subjectmodelingen_US
dc.subjectsimulationen_US
dc.titleMultiscale Modeling of Turbine Engine Component Under Manufacturing Uncertaintyen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume19
dc.identifier.issue4
dc.authorid0000-0002-0550-8335-
dc.identifier.wosWOS:000506878600017en_US
dc.identifier.scopus2-s2.0-85089662910en_US
dc.institutionauthorGörgülüarslan, Recep Muhammed-
dc.identifier.doi10.1115/1.4044011-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

32
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.