Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2750
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇamlıca, Sedat-
dc.contributor.authorYetik, İmam Şamil-
dc.contributor.authorArıkan, Orhan-
dc.date.accessioned2019-12-25T14:03:35Z
dc.date.available2019-12-25T14:03:35Z
dc.date.issued2019-06
dc.identifier.citationCamlica, S., Yetik, I. S., and Arikan, O. (2019). Sparsity based off-grid blind sensor calibration. Digital Signal Processing, 84, 80-92.en_US
dc.identifier.issn1051-2004
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1051200418304548?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2750-
dc.description.abstractCompressive Sensing (CS) based techniques generally discretize the signal space and assume that the signal has a sparse support restricted on the discretized grid points. This restriction of representing the signal on a discretized grid results in the off-grid problem which causes performance degradation in the reconstruction of signals. Sensor calibration is another issue which can cause performance degradation if not properly addressed. Calibration aims to reduce the disruptive effects of the phase and the gain biases. In this paper, a CS based blind calibration technique is proposed for the reconstruction of multiple off-grid signals. The proposed technique is capable of estimating the off-grid signals and correcting the gain and the phase biases due to insufficient calibration simultaneously. It is applied to off-grid frequency estimation and direction finding applications using blind calibration. Extensive simulation analyses are performed for both applications. Results show that the proposed technique has superior reconstruction performance. (C) 2018 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofDigital Signal Processing: A Review Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBlind calibrationen_US
dc.subjectsparseen_US
dc.subjectcompressive sensingen_US
dc.subjectoff-griden_US
dc.subjectdirection findingen_US
dc.subjectfrequency estimationen_US
dc.titleSparsity Based Off-Grid Blind Sensor Calibrationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume84
dc.identifier.startpage80
dc.identifier.endpage92
dc.authorid0000-0002-7330-4692-
dc.identifier.wosWOS:000453629500008en_US
dc.identifier.scopus2-s2.0-85055689736en_US
dc.institutionauthorYetik, İmam Şamil-
dc.identifier.doi10.1016/j.dsp.2018.10.005-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

64
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.