Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2673
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tan, Mehmet | - |
dc.contributor.author | Özgül, Ozan Fırat | - |
dc.contributor.author | Bardak, Batuhan | - |
dc.contributor.author | Ekşioğlu, Işıksu | - |
dc.contributor.author | Sabuncuoğlu, S. | - |
dc.date.accessioned | 2019-12-25T14:02:00Z | |
dc.date.available | 2019-12-25T14:02:00Z | |
dc.date.issued | 2019-09 | |
dc.identifier.citation | Tan, M., Özgül, O. F., Bardak, B., Ekşioğlu, I., and Sabuncuoğlu, S. (2019). Drug response prediction by ensemble learning and drug-induced gene expression signatures. Genomics, 111(5), 1078-1088. | en_US |
dc.identifier.issn | 0888-7543 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0888754318302416?via%3Dihub | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2673 | - |
dc.description.abstract | Chemotherapeutic response of cancer cells to a given compound is one of the most fundamental information one requires to design anti-cancer drugs. Recently, considerable amount of drug-induced gene expression data has become publicly available, in addition to cytotoxicity databases. These large sets of data provided an opportunity to apply machine learning methods to predict drug activity. However, due to the complexity of cancer drug mechanisms, none of the existing methods is perfect. In this paper, we propose a novel ensemble learning method to predict drug response. In addition, we attempt to use the drug screen data together with two novel signatures produced from the drug-induced gene expression profiles of cancer cell lines. Finally, we evaluate predictions by in vitro experiments in addition to the tests on data sets. The predictions of the methods, the signatures and the software are available from http://mtan.etu.edu.tr/drug-response-prediction/. © 2018 Elsevier Inc. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc. | en_US |
dc.relation.ispartof | Genomics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Drug signatures | en_US |
dc.subject | cell line signatures | en_US |
dc.subject | drug response prediction | en_US |
dc.subject | ensemble learning | en_US |
dc.title | Drug Response Prediction by Ensemble Learning and Drug-Induced Gene Expression Signatures | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 111 | |
dc.identifier.issue | 5 | |
dc.identifier.startpage | 1078 | |
dc.identifier.endpage | 1088 | |
dc.relation.tubitak | Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [115E274] | en_US |
dc.authorid | 0000-0002-1741-0570 | - |
dc.identifier.wos | WOS:000485764600010 | en_US |
dc.identifier.scopus | 2-s2.0-85049645304 | en_US |
dc.institutionauthor | Tan, Mehmet | - |
dc.identifier.pmid | 31533900 | en_US |
dc.identifier.doi | 10.1016/j.ygeno.2018.07.002 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
9
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
20
checked on Dec 21, 2024
Page view(s)
100
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.