Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarı, Mustafa-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2019-12-25T14:02:00Z
dc.date.available2019-12-25T14:02:00Z
dc.date.issued2018
dc.identifier.citationSarı, M., and Özbayoğlu, A. M. (2018, September). Classification of Turkish Documents Using Paragraph Vector. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1-5). IEEE.en_US
dc.identifier.isbn9.78154E+12
dc.identifier.urihttps://ieeexplore.ieee.org/document/8620813-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2669-
dc.description2018 International Conference on Artificial Intelligence and Data Processing ( 2018: Malatya; Turkey )
dc.description.abstractText processing and mining gained a lot of traction recently due to rising interest in integration of Natural Language Processing with data analytics algorithms, in particular Deep Learning Models. In this study, newspaper columnists are classified according to vector models created by their posts. Hence, we may not only be able to determine an unclassified post's author, but also author profiles can be formed by grouping similar styles together. DeepLearning4J Java library and Doc2Vec class are mainly the preferred deep learning solutions for text mining. The vector models of 5, 10, 15, and 20 authors were created from 20k corner posts. Two particular implementations, Distributed Memory (PV-DM) and Distributed Bag of Words (PV-DBOW) models were adapted and their performances are compared. According to the results, it is seen that some authors are clearly distinguished from other authors. Such a model can be used for author profile extraction, plagiarism detection and identifying which author styles are similar. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisher Institute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof 2018 International Conference on Artificial Intelligence and Data Processing (IDAP)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPV-DBOWen_US
dc.subjectPV-DMen_US
dc.subjectDL4Jen_US
dc.subjectparagraph Vectorsen_US
dc.subjectword2Vecen_US
dc.subjectdoc2Vecen_US
dc.subjecttext miningen_US
dc.subjectauthor profile identificationen_US
dc.titleClassification of Turkish Documents Using Paragraph Vectoren_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000458717400091en_US
dc.identifier.scopus2-s2.0-85062553507en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/IDAP.2018.8620813-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

126
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.