Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2667
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaratkhan, A.-
dc.contributor.authorİlyassov, I.-
dc.contributor.authorAitzhanov, M.-
dc.contributor.authorDemirci, Muhammed Fatih-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.date.accessioned2019-12-25T14:02:00Z
dc.date.available2019-12-25T14:02:00Z
dc.date.issued2019
dc.identifier.citationMaratkhan, A., Ilyassov, I., Aitzhanov, M., Demirci, M. F., and Ozbayoglu, M. (2019, June). Financial Forecasting using Deep Learning with an Optimized Trading Strategy. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 838-844). IEEE.en_US
dc.identifier.isbn9.78173E+12
dc.identifier.urihttps://ieeexplore.ieee.org/document/8789932-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2667-
dc.description2019 IEEE Congress on Evolutionary Computation ( 2019: Wellington; New Zealand)
dc.description.abstractFinancial forecasting using computational intelligence nowadays remains a hot topic. Recent improvements in deep neural networks allow us to predict financial market behavior. In our work we first implement a novel approach of [1], which converts financial time-series data to 2-D images and then feeds the generated images to a convolutional neural network as an input. We then hypothesize that the performance of the model can be improved using different techniques. Specifically, in our work, we improve the computational and financial performance of the previous approach by 1) fine-tuning the neural network hyperparameters, 2) creating images with 5 channels corresponding to indicator clusters, 3) improving financial evaluation using take profit and stop loss techniques, 4) evolutionary optimized parameters for trading strategy. The results of this study show that the above-mentioned strategies improve the model considerably. We conclude with future work that can be done in order to further improve the computational and financial performance of the model. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinancial forecastingen_US
dc.subjecttime-series classificationen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectcuckoo searchen_US
dc.titleFinancial Forecasting Using Deep Learning With an Optimized Trading Strategyen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage838
dc.identifier.endpage844
dc.identifier.scopus2-s2.0-85071294580en_US
dc.institutionauthorDemirci, Muhammed Fatih-
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.identifier.doi10.1109/CEC.2019.8789932-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

98
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.