Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2259
Title: | Menu Optimization With Large-Scale Data | Other Titles: | Büyük Veri ile Menü Eniyilemesi | Authors: | Karimov, Jeyhun | Advisors: | Özbayoğlu, Ahmet Murat | Keywords: | Optimization Bigdata Clustering Automated Teller Machine Eniyileme Büyük veri Kümeleme Bankamatik |
Publisher: | TOBB University of Economics and Technology,Graduate School of Engineering and Science TOBB ETÜ Fen Bilimleri Enstitüsü |
Source: | Karimov, J. (2015). Menu optimization with large-scale data. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi] | Abstract: | Farklı müşteri profilleri için en uygun menü kullanımı kullanılabilirlik, verimlilik ve müşteri memnuniyeti açısından esastır. Özellikle bankacılık gibi rekabetçi sektörlerde, en iyi menü kullanıcı arayüzüne sahip olmak bir zorunluluktur. Optimal menü yapısının belirlenmesi genellikle menü elemanının manuel ayarlanması ile gerçekleştirilir. Ancak, bu metot özellikle kompleks menülerde işe yaramaz. Bu çalışmada iki aşamadan oluşan cözüm önerilmiştir: kullanıcıları gruplandırmak ve gruplar için en uygun menüler bulmak. İlk bölüm için H(EC)2S, yeni hibrid Evrimsel Kümeleme algoritmasını geliştirdik. Ikinci bölümde optimal menü hesaplamak için Karışık Tamsayılı Programlama kullandık. Sonuçları gerçek ATM logları üzerinde test ettik ve performans artımı olduğunu gözlemledik. The use of optimal menu structuring for different customer profiles is essential because of usability, efficiency, and customer satisfaction. Especially in competitive industries such as banking, having optimal graphical user interface (GUI) is a must. Determining the optimal menu structure is generally accomplished through manual adjustment of the menu elements. However, such an approach is inherently flawed due to the overwhelming size of the optimization variables' search space. We propose a solution consisting of two phases: grouping users and finding optimal menus for groups. In first part, we used H(EC)2 S , novel Hybrid Evolutionary Clustering with Empty Clustering Solution. For second part we used Mixed Integer Programming (MIP) framework to calculate optimal menu. We evaluated the performance gains on a dataset of actual ATM usage logs. The results show that the proposed optimization approach provides significant reduction in the average transaction completion time and the overall click count. |
URI: | https://hdl.handle.net/20.500.11851/2259 https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp |
Appears in Collections: | Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
415446.pdf | 1.27 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
82
checked on Dec 16, 2024
Download(s)
32
checked on Dec 16, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.