Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2039
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErdoğan, A. E.-
dc.contributor.authorYlmaz, T.-
dc.contributor.authorSert, Onur Can-
dc.contributor.authorAkyüz, M.-
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-07-10T14:42:47Z
dc.date.available2019-07-10T14:42:47Z
dc.date.issued2017-07-31
dc.identifier.citationErdoğan, A. E., Yilmaz, T., Sert, O. C., Akyüz, M., Özyer, T., & Alhajj, R. (2017, July). From Social Media Analysis to Ubiquitous Event Monitoring: The case of Turkish Tweets. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 (pp. 1088-1095). ACM.en_US
dc.identifier.isbn978-145034993-2
dc.identifier.urihttps://dl.acm.org/citation.cfm?doid=3110025.3120986-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2039-
dc.description9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2017 : Sydney; Australia)
dc.description.abstractThe work described in this paper illustrates how social media is a valuable source of data which may be processed for informative knowledge discovery which may help in better decision making. We concentrate on Twitter as the source for the data to be processed. In particular, we extracted and captured tweets written in Turkish. We analyzed tweets online and real-time to determine most recent trending events, their location and time. The outcome may help predicting next hot events to be broadcasted in the news. It may also raise alert and warn people related to upcoming or ongoing disaster or an event which should be avoided, e.g., traffic jam, terror attacks, earthquake, flood, storm, fire, etc. To achieve this, a tweet may be labeled with more than one event. Named entity recognition combined with multinomial naive Bayes and stochastic gradient descent have been integrated in the process. The reported 95% success rate demonstrate the applicability and effectiveness of the proposed approach. © 2017 Association for Computing Machinery.en_US
dc.description.sponsorshipACM SIGMOD,Gemalto,IEEE Computer Society,IEEE TCDE,Springer Nature
dc.language.isoenen_US
dc.publisherAssociation for Computing Machinery, Inc.en_US
dc.relation.ispartofProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Miningen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectModelsen_US
dc.subjectAlgorithmsen_US
dc.subjecthot topicen_US
dc.titleFrom Social Media Analysis To Ubiquitous Event Monitoring: the Case of Turkish Tweetsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage1088
dc.identifier.endpage1095
dc.identifier.scopus2-s2.0-85040217683en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1145/3110025.3120986-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Dec 21, 2024

Page view(s)

118
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.