Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2019-07-10T14:42:47Z
dc.date.available2019-07-10T14:42:47Z
dc.date.issued2017-10-20
dc.identifier.citationÖzyer, T., & Alhajj, R. (2017, May). A comprehensive approach for validating p53 binding site predictions. In 2017 8th International Conference on Information Technology (ICIT) (pp. 846-853). IEEE.en_US
dc.identifier.isbn978-150906332-1
dc.identifier.urihttps://ieeexplore.ieee.org/document/8079957-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2035-
dc.description8th International Conference on Information Technology (2017 : Amman; Jordan)
dc.description.abstractPredicting the locations of Response Elements (RE) has received considerable attention in the field of gene sequence analysis and bioinformatics. Protein53 (p53) has a prominent role in the cell cycle and cancer prevention; it functions as a transcription factor and binds with p53 REs in the DNA. The identification of p53 response elements enlightens the unknown functions and characteristics of p53 besides the genes containing binding sites. In this work, we have proposed an algorithm for validating the prediction of the possible p53 binding sites in the human genome, by incorporating the recent findings on the p53 REs into our suggested profile hidden Markov model (PHMM). We constructed two PHMMs and the results described in this paper are very promising. In the experiments, we have used the p53 REs data reported by Riley et al. [21]. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofICIT 2017 - 8th International Conference on Information Technology, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeoplasmsen_US
dc.subjectTumor Suppressor Protein p53en_US
dc.subjectp53 proteinsen_US
dc.titleA Comprehensive Approach for Validating P53 Binding Site Predictionsen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage846
dc.identifier.endpage853
dc.identifier.scopus2-s2.0-85040021851en_US
dc.institutionauthorÖzyer, Tansel-
dc.identifier.doi10.1109/ICITECH.2017.8079957-
dc.authorscopusid8914139000-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

118
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.