Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/2025
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tan, Mehmet | - |
dc.date.accessioned | 2019-07-10T14:42:46Z | |
dc.date.available | 2019-07-10T14:42:46Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Tan, M. (2014, November). Drug sensitivity prediction for cancer cell lines based on pairwise kernels and miRNA profiles. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 156-161). IEEE. | en_US |
dc.identifier.isbn | 978-1-4799-5669-2 | |
dc.identifier.issn | 2156-1125 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/6999145 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/2025 | - |
dc.description | IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM) (2014 : Belfast; United Kingdom) | |
dc.description.abstract | Cancer cell lines comprise an important tool to design and evaluate new drug candidates. Prediction of in vivo drug response for cancer cell lines has become attractive due to recently issued large scale drug screen databases. The data provided by these databases can be the key to model drug sensitivity for cancer cell lines. The data provided by these databases is in the form of drug cell line pairs where a natural method for prediction of drug response, therefore is pairwise support vector machines. This paper presents results on the application of pairwise kernels for drug response prediction, where the results are promising compared to some previously well-performed methods on this task. In addition, effect of exploiting microRNA profiles of cancer cell lines together with mRNA profiles is given. | en_US |
dc.description.sponsorship | BioBusiness,et al.,IEEE,National Science Foundation (NSF),Nsilico-Simplicity,University of Ulster | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE International Conference on Bioinformatics and Biomedicine-BIBM | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Pharmaceutical Preparations | en_US |
dc.subject | Neoplasms | en_US |
dc.subject | Sensitivity prediction | en_US |
dc.title | Drug Sensitivity Prediction for Cancer Cell Lines Based on Pairwise Kernels and Mirna Profiles | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.authorid | 0000-0002-1741-0570 | - |
dc.identifier.wos | WOS:000377412300181 | en_US |
dc.identifier.scopus | 2-s2.0-84922787395 | en_US |
dc.institutionauthor | Tan, Mehmet | - |
dc.identifier.doi | 10.1109/BIBM.2014.6999145 | - |
dc.authorwosid | I-2328-2019 | - |
dc.authorscopusid | 36984623900 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Dec 21, 2024
Page view(s)
84
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.