Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2021
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTolan, Ertan-
dc.contributor.authorTan, Mehmet-
dc.date.accessioned2019-07-10T14:42:46Z
dc.date.available2019-07-10T14:42:46Z
dc.date.issued2016
dc.identifier.citationTolan, E., & Tan, M. (2016, November). Anti-cancer Drug Activity Prediction by Ensemble Learning. In Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 431-436). SCITEPRESS-Science and Technology Publications, Lda.en_US
dc.identifier.isbn978-989-758-203-5
dc.identifier.urihttp://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006085704310436-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/2021-
dc.description8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR) (2016 : Porto; Portugal)
dc.description.abstractPersonalized cancer treatment is an ever-evolving approach due to complexity of cancer. As a part of personalized therapy, effectiveness of a drug on a cell line is measured. However, these experiments are backbreaking and money consuming. To surmount these difficulties, computational methods are used with the provided data sets. In the present study, we considered this as a regression problem and designed an ensemble model by combining three different regression models to reduce prediction error for each drug-cell line pair. Two major data sets were used to evaluate our method. Results of this evaluation show that predictions of ensemble method are significantly better than models per se. Furthermore, we report the cytotoxicty predictions of our model for the drug-cell line pairs that do not appear in the original data sets.en_US
dc.description.sponsorshipFundacao para a Ciencia e Tecnologia (FCT),Institute for Systems and Technologies of Information, Control and Communication (INSTICC)
dc.language.isoenen_US
dc.publisherSCITEPRESSen_US
dc.relation.ispartofIC3K 2016 - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCanceren_US
dc.subjectDrug Activityen_US
dc.subjectEnsemble Learningen_US
dc.titleAnti-Cancer Drug Activity Prediction by Ensemble Learningen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.startpage431
dc.identifier.endpage436
dc.authorid0000-0002-1741-0570-
dc.identifier.wosWOS:000391111000049en_US
dc.identifier.scopus2-s2.0-85006999375en_US
dc.institutionauthorTan, Mehmet-
dc.identifier.doi10.5220/0006085704310436-
dc.authorwosidI-2328-2019-
dc.authorscopusid36984623900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

102
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.