Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1992
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Önal, Aras Can | - |
dc.contributor.author | Sezer, Ömer Berat | - |
dc.contributor.author | Özbayoğlu, Ahmet Murat | - |
dc.contributor.author | Doğdu, Erdoğan | - |
dc.date.accessioned | 2019-07-10T14:42:44Z | |
dc.date.available | 2019-07-10T14:42:44Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Onal, A. C., Sezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017, December). Weather data analysis and sensor fault detection using an extended iot framework with semantics, big data, and machine learning. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 2037-2046). IEEE. | en_US |
dc.identifier.isbn | 978-1-5386-2715-0 | |
dc.identifier.issn | 2639-1589 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/8258150 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1992 | - |
dc.description | IEEE International Conference on Big Data (IEEE Big Data) (2017 : Boston, MA) | |
dc.description.abstract | In recent years, big data and Internet of Things (IoT) implementations started getting more attention. Researchers focused on developing big data analytics solutions using machine learning models. Machine learning is a rising trend in this field due to its ability to extract hidden features and patterns even in highly complex datasets. In this study, we used our Big Data IoT Framework in a weather data analysis use case. We implemented weather clustering and sensor anomaly detection using a publicly available dataset. We provided the implementation details of each framework layer (acquisition, ETL, data processing, learning and decision) for this particular use case. Our chosen learning model within the library is Scikit-Learn based k-means clustering. The data analysis results indicate that it is possible to extract meaningful information from a relatively complex dataset using our framework. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Internet of things | en_US |
dc.subject | machine learning | en_US |
dc.subject | framework | en_US |
dc.subject | big data analytics | en_US |
dc.subject | weather data analysis | en_US |
dc.subject | anomaly detection | en_US |
dc.subject | fault detection | en_US |
dc.subject | clustering | en_US |
dc.title | Weather Data Analysis and Sensor Fault Detection Using an Extended Iot Framework With Semantics, Big Data, and Machine Learning | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 2037 | |
dc.identifier.endpage | 2046 | |
dc.authorid | 0000-0001-7998-5735 | - |
dc.identifier.wos | WOS:000428073702004 | en_US |
dc.identifier.scopus | 2-s2.0-85047833066 | en_US |
dc.institutionauthor | Özbayoğlu, Ahmet Murat | - |
dc.identifier.doi | 10.1109/BigData.2017.8258150 | - |
dc.authorwosid | H-2328-2011 | - |
dc.authorscopusid | 6505999525 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.1. Department of Artificial Intelligence Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
22
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
33
checked on Dec 14, 2024
Page view(s)
110
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.