Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYılmaz, Kutlu Emre-
dc.contributor.authorAbul, Osman-
dc.date.accessioned2019-07-10T14:42:44Z-
dc.date.available2019-07-10T14:42:44Z-
dc.date.issued2018-
dc.identifier.citationYilmaz, K. E., & Abul, O. (2018, June). Inferring Political Alignments of Twitter Users. In 2018 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-6). IEEE.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/8531001/-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1987-
dc.description2018 International Symposium on Networks, Computers and Communications (2018 : Rome; Italy)en_US
dc.description.abstractIncreasing popularity of Twitter in politics is subject to commercial and academic interest. To fully exploit the merits of this platform, reaching target audience with desired political leanings is critical. This paper extends the research on inferring political orientations of Twitter users to the case of 2017 Turkish constitutional referendum. After constructing a targeted dataset of tweets, we explore several types of potential features to build accurate machine learning based predictive models. In our experiments, three-class support vector machine (SVM) classifier trained on semantic features achieves the best accuracy score of 89.9%. Moreover, an SVM classifier trained on full text features performs better than an SVM classifier trained on hashtags, with respective accuracy scores of 89.05% and 85.9%. Relatively high accuracy scores obtained by full text features may point to differences in language use, which deserves further research. © 2018 IEEE.en_US
dc.description.sponsorshipdbw Communication,iDirect,Nextant Applications and Innovative Solutions (NAIS)en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSocial networking (online)en_US
dc.subjectClassification (of information)en_US
dc.subjectonline socialen_US
dc.titleInferring Political Alignments of Twitter Users a Case Study on 2017 Turkish Constitutional Referendumen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0002-9284-6112-
dc.identifier.wosWOS:000494708800066-
dc.identifier.scopus2-s2.0-85058455430-
dc.institutionauthorAbul, Osman-
dc.identifier.doi10.1109/ISNCC.2018.8531001-
dc.authorscopusid6602597612-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.

SCOPUSTM   
Citations

2
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

7
checked on Jan 4, 2025

Page view(s)

66
checked on Jan 6, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.