Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1978
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bilgin, Ahmet Tunç | - |
dc.contributor.author | Kadıoğlu-Ürtiş, Esra | - |
dc.date.accessioned | 2019-07-10T14:42:43Z | |
dc.date.available | 2019-07-10T14:42:43Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Bilgin, A. T., & Kadioglu-Urtis, E. (2015, July). An approach to multi-agent pursuit evasion games using reinforcement learning. In 2015 International Conference on Advanced Robotics (ICAR)(pp. 164-169). IEEE. | en_US |
dc.identifier.isbn | 978-1-4673-7509-2 | |
dc.identifier.uri | https://ieeexplore.ieee.org/document/7251450 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1978 | - |
dc.description | 17th International Conference on Advanced Robotics (2015 : Istanbul; Turkey) | |
dc.description.abstract | The game of pursuit-evasion has always been a popular research subject in the field of robotics. Reinforcement learning, which employs an agent's interaction with the environment, is a method widely used in pursuit-evasion domain. In this paper, a research is conducted on multi-agent pursuit-evasion problem using reinforcement learning and the experimental results are shown. The intelligent agents use Watkins's Q(lambda)-learning algorithm to learn from their interactions. Q-learning is an off-policy temporal difference control algorithm. The method we utilize on the other hand, is a unified version of Q-learning and eligibility traces. It uses backup information until the first occurrence of an exploration. In our work, concurrent learning is adopted for the pursuit team. In this approach, each member of the team has got its own action-value function and updates its information space independently. | en_US |
dc.description.sponsorship | Aselsan,et al.,IEEE Robotics and Automation Society,Kadir Has Universitesi,ODTU METU,TAI | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | Proceedings of the 17th International Conference on Advanced Robotics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Reinforcement learning | en_US |
dc.subject | Watkins's Q(lambda)-learning | en_US |
dc.subject | Pursuit evasion | en_US |
dc.subject | Multi-agent systems | en_US |
dc.title | An Approach To Multi-Agent Pursuit Evasion Games Using Reinforcement Learning | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 164 | |
dc.identifier.endpage | 169 | |
dc.authorid | 0000-0003-2334-1484 | - |
dc.identifier.wos | WOS:000380471000026 | en_US |
dc.identifier.scopus | 2-s2.0-84957707469 | en_US |
dc.institutionauthor | Kadıoğlu-Ürtiş, Esra | - |
dc.identifier.doi | 10.1109/ICAR.2015.7251450 | - |
dc.authorscopusid | 6602637886 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
10
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
23
checked on Nov 9, 2024
Page view(s)
102
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.