Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1784
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çetinel, Sibel | - |
dc.contributor.author | Dinçer, Sevil | - |
dc.contributor.author | Cebeci, Anıl | - |
dc.contributor.author | Ören, Ersin Emre | - |
dc.contributor.author | Whitaker, John D. | - |
dc.contributor.author | Schwartz, Daniel T. | - |
dc.contributor.author | Karagüler, Nevin Gül | - |
dc.contributor.author | Sarıkaya, Mehmet | - |
dc.contributor.author | Tamerler, Candan | - |
dc.date.accessioned | 2019-07-08T13:29:34Z | |
dc.date.available | 2019-07-08T13:29:34Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Cetinel, S., Dincer, S., Cebeci, A., Oren, E. E., Whitaker, J. D., Schwartz, D. T., ... & Tamerler, C. (2012). Peptides to bridge biological-platinum materials interface. Bioinspired, Biomimetic and Nanobiomaterials, 1(3), 143-153. | en_US |
dc.identifier.issn | 2045-9858 | |
dc.identifier.uri | https://doi.org/10.1680/bbn.12.00008 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/1784 | - |
dc.description.abstract | Peptides with inorganic materials recognition already started to impact a wide range of surface- related technologies ranging from biomonitoring to biomedical areas. Combinatorial biology- based libraries are the initial step in tempting the directed evolution of peptides with specifi c interactions towards technologically relevant materials. Here, a case study is provided to demonstrate the specifi c peptide binding and the amino acids residues that play an important role for platinum surface affi nity by combining computational as well as genetic engineering tools. Using a phage display technique, septapeptides were identifi ed exhibiting affi nity to noble metal platinum, and the amino acid distributions in the identifi ed peptides were analyzed. The analysis of the peptide sequences showed that strong Pt- binding peptides contain positively charged, hydrophilic, and polar residues, and especially enriched in threonine, serine, and glutamine. Under competitive surface- binding conditions, strong Pt- binding peptide motif displayed on phage resulted in high specifi city to Pt regions on a Pt- macropatterned glass. Conformational analysis of the strong binder indicates that threonine and serine as well as glutamine are in close contact with the surfaces forming a tripod molecular architecture. The alanine substitution mutagenesis applied at the genomic level to the peptide displayed on the phage revealed threonine and serine substitutions as the critical ones. Understanding the residue- based interactions of the peptide sequences can be utilized to tune the affi nity and the specifi city of the peptides with the inorganic surfaces, toward making them indispensable molecular tools to control the molecular interactions of biological macromolecules with the material surfaces. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ice Publishing | en_US |
dc.relation.ispartof | Bioinspired Biomimetic And Nanobiomaterials | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | platinum binding peptides | en_US |
dc.subject | biointerfaces | en_US |
dc.subject | nanobiotechnology | en_US |
dc.title | Peptides To Bridge Biological-Platinum Materials Interface | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Biomedical Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 1 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 143 | |
dc.identifier.endpage | 153 | |
dc.relation.tubitak | TUBITAK/NSF-IRES Joint Project [107T250] | en_US |
dc.authorid | 0000-0001-5902-083X | - |
dc.identifier.wos | WOS:000208935100002 | en_US |
dc.identifier.scopus | 2-s2.0-84881078041 | en_US |
dc.institutionauthor | Ören, Ersin Emre | - |
dc.identifier.doi | 10.1680/bbn.12.00008 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.relation.other | Turkish State Planning Organization (DPT) through The Advanced Technologies Program at Istanbul Technical University | en_US |
dc.relation.international | US Army Research Office through the DURINT Program (Defense University Research Initiative on NanoTechnology [DAAD19-01-1-0499] | en_US |
dc.relation.international | National Science Foundation through the Genetically Engineered Materials Science & Engineering Center (GEMSEC) at UW [DMR-0520567] | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.2. Department of Biomedical Engineering | - |
Appears in Collections: | Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
14
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 9, 2024
Page view(s)
96
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.