Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1677
Title: Hopf Bifurcations in Lengyel-Epstein Reaction-Diffusion Model With Discrete Time Delay
Authors: Merdan, Hüseyin
Kayan, S.
Keywords: Lengyel-Epstein reaction-diffusion model
Hopf bifurcation
Stability
Time delay
Periodic solutions
Publisher: Springer
Source: Merdan, H., & Kayan, Ş. (2015). Hopf bifurcations in Lengyel–Epstein reaction–diffusion model with discrete time delay. Nonlinear Dynamics, 79(3), 1757-1770.
Abstract: We investigate bifurcations of the Lengyel-Epstein reaction-diffusion model involving time delay under the Neumann boundary conditions. Choosing the delay parameter as a bifurcation parameter, we show that Hopf bifurcation occurs. We also determine two properties of the Hopf bifurcation, namely direction and stability, by applying the normal form theory and the center manifold reduction for partial functional differential equations.
URI: https://doi.org/10.1007/s11071-014-1772-8
https://hdl.handle.net/20.500.11851/1677
ISSN: 0924-090X
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

22
checked on Nov 9, 2024

Page view(s)

124
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.