Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1590
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKamışlık, Aslı Bektaş-
dc.contributor.authorKesemen, Tülay-
dc.contributor.authorKhaniyev, Tahir-
dc.date.accessioned2019-07-03T14:44:47Z
dc.date.available2019-07-03T14:44:47Z
dc.date.issued2018
dc.identifier.citationKesemen, T., & Khaniyev, T. (2018). On The Moments For Ergodic Distribution Of An Inventory Model Of Type (S; S) With Regularly Varying Demands Having Infinite Variance. TWMS Journal of Applied and Engineering Mathematics, 8(1a), 318.en_US
dc.identifier.issn2146-1147
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/324340-
dc.identifier.urihttp://jaem.isikun.edu.tr/web/-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1590-
dc.description.abstractIn this study a stochastic process X(t) which represents a semi Markovian inventory model of type (s,S) has been considered in the presence of regularly varying tailed demand quantities. The main purpose of the current study is to investigate the asymptotic behavior of the moments of ergodic distribution of the process X(t) when the demands have any arbitrary distribution function from the regularly varying subclass of heavy tailed distributions with in finite variance. In order to obtain renewal function generated by the regularly varying random variables, we used a special asymptotic expansion provided by Geluk [14]. As a first step we investigate the current problem with the whole class of regularly varying distributions with tail parameter 1 < alpha < 2 rather than a single distribution. We obtained a general formula for the asymptotic expressions of nth order moments (n = 1, 2, 3, ...) of ergodic distribution of the process X(t). Subsequently we consider this system with Pareto distributed demand random variables and apply obtained results in this special case.en_US
dc.description.abstract[Kamislik, A. Bektas] Recep Tayyip Erdogan Univ, Fac Arts & Sci, Dept Math, Rize, Turkey; [Kesemen, T.] Karadeniz Tech Univ, Fac Sci, Dept Math, Trabzon, Turkey; [Khaniyev, T.] TOBB Univ Econ & Technol, Fac Engn, Dept Ind Engn, Ankara, Turkeyen_US
dc.language.isoenen_US
dc.publisherTurkic World Mathematical Socen_US
dc.relation.ispartofTwms Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSemi Markovian Inventory Modelen_US
dc.subjectRenewal Reward Processen_US
dc.subjectRegular Variationen_US
dc.subjectMomentsen_US
dc.subjectAsymptotic Expansionen_US
dc.titleOn the Moments for Ergodic Distribution of an Inventory Model of Type (s, S) With Regularly Varying Demands Having Infinite Varianceen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume8
dc.identifier.issue1A
dc.identifier.startpage318
dc.identifier.endpage329
dc.relation.tubitakinfo:eu-repo/grantAgreement/TÜBİTAK/MFAG/115F221en_US
dc.authorid0000-0003-1974-0140-
dc.identifier.wosWOS:000443871200017en_US
dc.identifier.scopus2-s2.0-85058309312en_US
dc.institutionauthorKhaniyev, Tahir-
dc.authorscopusid7801652544-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
dc.identifier.trdizinid324340en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Aug 31, 2024

Page view(s)

66
checked on Dec 16, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.