Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1576
Title: | Asymptotic Approach for a Renewal-Reward Process With a General Interference of Chance | Authors: | Aliyev, Rovshan Ardic, Özlem Khaniyev, Tahir |
Keywords: | Asymptotic expansion Discrete interference of chance Ergodic distribution Moments Renewal-reward process Primary 60K15 Secondary 60K05 60K30 |
Publisher: | Taylor & Francis Inc | Source: | Aliyev, R., Ardic, O., & Khaniyev, T. (2016). Asymptotic approach for a renewal-reward process with a general interference of chance. Communications in Statistics-Theory and Methods, 45(14), 4237-4248. | Abstract: | In this study, a renewal-reward process with a discrete interference of chance is constructed and considered. Under weak conditions, the ergodicity of the process X(t) is proved and exact formulas for the ergodic distribution and its moments are found. Within some assumptions for the discrete interference of chance in general form, two-term asymptotic expansions for all moments of the ergodic distribution are obtained. Additionally, kurtosis coefficient, skewness coefficient, and coefficient of variation of the ergodic distribution are computed. As a special case, a semi-Markovian inventory model of type (s, S) is investigated. [Aliyev, Rovshan] Baku State Univ, Dept Probabil Theory & Math Stat, Baku, AZ, Azerbaijan; [Ardic, Ozlem; Khaniyev, Tahir] TOBB Univ Econ & Technol, Dept Ind Engn, TR-06560 Ankara, Turkey; [Aliyev, Rovshan; Khaniyev, Tahir] Azerbaijan Natl Acad Sci, Inst Cybernet, Baku, AZ, Azerbaijan |
URI: | https://doi.org/10.1080/03610926.2014.917679 https://hdl.handle.net/20.500.11851/1576 |
ISSN: | 0361-0926 |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
3
checked on Jan 18, 2025
WEB OF SCIENCETM
Citations
9
checked on Aug 31, 2024
Page view(s)
144
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.