Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/1541
Title: | Cfd-Driven Surrogate-Based Multi-Objective Shape Optimization of an Elbow Type Draft Tube | Authors: | Demirel, Gizem Acar, Erdem Çelebioğlu, Kutay Aradağ, Selin |
Keywords: | Francis turbine Draft tube Optimization Pressure recovery factor Meta-model |
Publisher: | Pergamon-Elsevier Science Ltd | Source: | Demirel, G., Acar, E., Celebioglu, K., & Aradag, S. (2017). CFD-driven surrogate-based multi-objective shape optimization of an elbow type draft tube. International Journal of Hydrogen Energy, 42(28), 17601-17610. | Abstract: | Draft tube is the part of Francis turbines which is used to both discharge water and recover kinetic energy at the exit of the runner. A design optimization study of an elbow type draft tube based on the combined use of Computational Fluid Dynamics (CFD), design of experiments, surrogate models and multi-objective optimization is presented in this study. The geometric variables that specify the shape of the draft tube are chosen as input variables for surrogate models and the pressure recovery factor and the head loss are selected as output responses. It is determined that, pressure recovery factor, which is the main performance parameter, can be increased by 4.3%, and head loss can be reduced by %20 compared to the initial CFD aided design. Pressure recovery factor, is represented with a second order polynomial regression model in terms of the geometrical parameters based on the optimization results. The verification of the model is also provided by comparison with CFD results for different draft tubes other than that are used in the development of the model. The model is verified using 30 different design points and it can predict the pressure recovery factor with an error of less than 8%. This model allows the fast and correct design and optimization of elbow type draft tubes, without the need for further CFD simulations. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. | URI: | https://www.sciencedirect.com/science/article/pii/S0360319917310066 https://hdl.handle.net/20.500.11851/1541 |
ISSN: | 0360-3199 |
Appears in Collections: | Makine Mühendisliği Bölümü / Department of Mechanical Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
8
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
17
checked on Aug 31, 2024
Page view(s)
152
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.