Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcar, Erdem-
dc.date.accessioned2019-06-26T08:07:00Z
dc.date.available2019-06-26T08:07:00Z
dc.date.issued2015-04-01
dc.identifier.citationAcar, E. (2015). Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Systems with Applications, 42(5), 2703-2709.en_US
dc.identifier.issn0957-4174
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417414007064-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1466-
dc.description.abstractOptimization of complex engineering systems is performed using computationally expensive high fidelity computer simulations (e.g., finite element analysis). During optimization these high-fidelity simulations are performed many times, so the computational cost becomes excessive. To alleviate the computational burden, metamodels are used to mimic the behavior of these computationally expensive simulations. The prediction capability of metamodeling can be improved by combining various types of models in the form of a weighted average ensemble. The contribution of each models is usually determined such that the root mean square cross validation error (RMSE-CV) is minimized in an aim to minimize the actual root mean square error (RMSE). However, for some applications, other error metrics such as the maximum absolute error (MAXE) may be the error metric of interest. It can be argued, intuitively, that when MAXE is more important than RMSE, the weight factors in ensemble should be determined by minimizing the maximum absolute cross validation error (MAXE-CV). Interestingly, it is found that the ensemble model based on MAXE-CV minimization is less accurate than the ensemble model based on RMSE-CV minimization even if the MAXE is the metric of interest. The reason is found to be that MAXE-CV is mostly related with the geography of the DOE rather than the prediction ability of metamodels. (C) 2014 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnsembleen_US
dc.subjectError metricsen_US
dc.subjectMetamodelingen_US
dc.subjectSurrogate modelingen_US
dc.titleEffect of Error Metrics on Optimum Weight Factor Selection for Ensemble of Metamodelsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume42
dc.identifier.issue5
dc.identifier.startpage2703
dc.identifier.endpage2709
dc.authorid0000-0002-3661-5563-
dc.identifier.wosWOS:000348619900037en_US
dc.identifier.scopus2-s2.0-84918840902en_US
dc.institutionauthorAcar, Erdem-
dc.identifier.doi10.1016/j.eswa.2014.11.020-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

30
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

37
checked on Dec 21, 2024

Page view(s)

114
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.