Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12675
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlazemi, Abdullah-
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2025-09-10T17:26:48Z-
dc.date.available2025-09-10T17:26:48Z-
dc.date.issued2025-
dc.identifier.issn2664-2557-
dc.identifier.urihttps://doi.org/10.47443/dml.2024.165-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12675-
dc.description.abstractAs a sequential analogue of binomial coefficients, we consider general Fibonomial coefficients with indices in arithmetic progressions. We give a recurrence relation and a generating matrix for the products of these coefficients. We find explicitly the spectrum of the generating matrix by constructing new relationships between the coefficients and characteristic polynomials of general Pascal matrices. We derive various identities for the general Fibonomial coefficients. Finally, we present a matrix approach to derive a formula for sums of these coefficients. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherShahin Digital Publisheren_US
dc.relation.ispartofDiscrete Mathematics Lettersen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFibonomial Coefficientsen_US
dc.subjectGenerating Functionen_US
dc.subjectGenerating Matrixen_US
dc.subjectRecurrence Relationen_US
dc.subjectSumsen_US
dc.titleProducts of General Fibonomial Coefficients via Matricesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume15en_US
dc.identifier.startpage1en_US
dc.identifier.endpage8en_US
dc.identifier.scopus2-s2.0-105012934001-
dc.identifier.doi10.47443/dml.2024.165-
dc.authorscopusid57193952032-
dc.authorscopusid15757727500-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.