Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir, Mertcan-
dc.contributor.authorErogul, Osman-
dc.date.accessioned2025-09-10T17:25:40Z-
dc.date.available2025-09-10T17:25:40Z-
dc.date.issued2025-
dc.identifier.issn2075-4418-
dc.identifier.urihttps://doi.org/10.3390/diagnostics15161985-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12665-
dc.description.abstractBackground: The limited availability of cardiac MRI data significantly constrains deep learning applications in cardiovascular imaging, necessitating innovative approaches to address data scarcity while preserving critical cardiac anatomical features. Methods: We developed a specialized denoising diffusion probabilistic model incorporating an attention-enhanced UNet architecture with strategically placed attention blocks across five hierarchical levels. The model was trained and evaluated on the OCMR dataset and compared against state-of-the-art generative approaches including StyleGAN2-ADA, WGAN-GP, and VAE baselines. Results: Our approach achieved superior image quality with a Fr & eacute;chet Inception Distance of 77.78, significantly outperforming StyleGAN2-ADA (117.70), WGAN-GP (227.98), and VAE (325.26). Structural similarity metrics demonstrated excellent performance (SSIM: 0.720 +/- 0.143; MS-SSIM: 0.925 +/- 0.069). Clinical validation by cardiac radiologists yielded discrimination accuracy of only 60.0%, indicating near-realistic image quality that is challenging for experts to distinguish from real images. Comprehensive anatomical analysis revealed that 13 of 20 cardiac metrics showed no significant differences between real and synthetic images, with particularly strong preservation of left ventricular features. Discussion: The generated synthetic images demonstrate high anatomical fidelity with expert-level quality, as evidenced by the difficulty radiologists experienced in distinguishing synthetic from real images. The strong preservation of cardiac anatomical features, particularly left ventricular characteristics, indicates the model's potential for medical image analysis applications. Conclusions: This work establishes diffusion models as a robust solution for cardiac MRI data augmentation, successfully generating anatomically accurate synthetic images that enhance downstream clinical applications while maintaining diagnostic fidelity.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofDiagnosticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDiffusion Modelsen_US
dc.subjectCardiac MRIen_US
dc.subjectMedical Image Synthesisen_US
dc.subjectAttention Mechanismsen_US
dc.subjectGenerative Modelsen_US
dc.subjectDeep Learningen_US
dc.subjectData Augmentationen_US
dc.subjectMedical Imagingen_US
dc.titleDiffusion Model-Based Augmentation Using Asymmetric Attention Mechanisms for Cardiac MRI Imagesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume15en_US
dc.identifier.issue16en_US
dc.identifier.wosWOS:001558520500001-
dc.identifier.scopus2-s2.0-105014505730-
dc.identifier.doi10.3390/diagnostics15161985-
dc.authorscopusid57202418027-
dc.authorscopusid56247443100-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.