Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12536
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamazanli, Burcu-
dc.contributor.authorYagmur, Oyku-
dc.contributor.authorSarioglu, Efe Cesur-
dc.contributor.authorSalman, Huseyin Enes-
dc.date.accessioned2025-07-10T19:45:09Z-
dc.date.available2025-07-10T19:45:09Z-
dc.date.issued2025-
dc.identifier.issn2306-5354-
dc.identifier.urihttps://doi.org/10.3390/bioengineering12050437-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12536-
dc.description.abstractResearch on abdominal aortic aneurysms (AAAs) primarily focuses on developing a clear understanding of the initiation, progression, and treatment of AAA through improved model accuracy. High-fidelity hemodynamic and biomechanical predictions are essential for clinicians to optimize preoperative planning and minimize therapeutic risks. Computational fluid dynamics (CFDs), finite element analysis (FEA), and fluid-structure interaction (FSI) are widely used to simulate AAA hemodynamics and biomechanics. However, the accuracy of these simulations depends on the utilization of realistic and sophisticated boundary conditions (BCs), which are essential for properly integrating the AAA with the rest of the cardiovascular system. Recent advances in machine learning (ML) techniques have introduced faster, data-driven surrogates for AAA modeling. These approaches can accelerate segmentation, predict hemodynamics and biomechanics, and assess disease progression. However, their reliability depends on high-quality training data derived from CFDs and FEA simulations, where BC modeling plays a crucial role. Accurate BCs can enhance ML predictions, increasing the clinical applicability. This paper reviews existing BC models, discussing their limitations and technical challenges. Additionally, recent advancements in ML and data-driven techniques are explored, discussing their current states, future directions, common algorithms, and limitations.en_US
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkiye) 3501-Career Development Program [221M001]en_US
dc.description.sponsorshipADA Universityen_US
dc.description.sponsorshipThis research was supported by TUBITAK (The Scientific and Technological Research Council of Turkiye) 3501-Career Development Program (Project number: 221M001). The publication of this article was funded by ADA University.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAbdominal Aortic Aneurysmen_US
dc.subjectBiomechanicsen_US
dc.subjectHemodynamicsen_US
dc.subjectFluid-Structure Interactionen_US
dc.subjectBoundary Conditionsen_US
dc.subjectWindkessel Modelen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectData-Driven Techniquesen_US
dc.titleModeling Techniques and Boundary Conditions in Abdominal Aortic Aneurysm Analysis: Latest Developments in Simulation and Integration of Machine Learning and Data-Driven Approachesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume12en_US
dc.identifier.issue5en_US
dc.identifier.wosWOS:001496678900001-
dc.identifier.scopus2-s2.0-105006649815-
dc.identifier.pmid40428056-
dc.identifier.doi10.3390/bioengineering12050437-
dc.authorwosidRamazanli, Burcu/Jpa-1946-2023-
dc.authorwosidSalman, Hüseyin Enes/Hhn-4881-2022-
dc.authorscopusid57209364851-
dc.authorscopusid59915571600-
dc.authorscopusid55567773400-
dc.authorscopusid59915220700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.