Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12532
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEren, Ozhan-
dc.contributor.authorAltin-Kayhan, Aysegul-
dc.date.accessioned2025-07-10T19:45:06Z-
dc.date.available2025-07-10T19:45:06Z-
dc.date.issued2025-
dc.identifier.issn1570-8705-
dc.identifier.issn1570-8713-
dc.identifier.urihttps://doi.org/10.1016/j.adhoc.2025.103933-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12532-
dc.description.abstractGiven that data generation rates of sensors might deviate from what is anticipated during the configuration phase due to several reasons such as event-driven data spikes, dynamic environmental conditions, propagation delay and data buffering, etc., designing robust transmission schemes is pivotal for Underwater Wireless Sensor Networks (UWSNs). Despite advances in underwater technologies, UWSN optimization under traffic uncertainty remains underexplored. This paper presents a novel simulation-informed robust optimization framework for designing energy-efficient UWSNs. We begin with a comprehensive review of the literature that addresses uncertainty in system parameters for wireless network design, followed by an analysis of research focused on modeling the motion of underwater objects. Then, we propose simulating an intrusion detection environment that includes moving targets, such as autonomous underwater vehicles and submarines navigating along 3D routes. To improve simulation accuracy, real bathymetric data is used to define the interactions between system elements including vehicles, sensors, and ocean topography. Then, the expected data generation rates of sensors and the corresponding admissible intervals are determined using the results from multiple simulation runs. The resulting data set is used to determine and conduct comprehensive analyses on optimal deterministic and robust configurations, where the maximum battery allocated to a sensor is minimized. The scenario-based comparison of network functional time between deterministic and robust configurations indicates that the robust design substantially outperforms the deterministic configuration across all data rate realizations, even at the lowest level of deviation from the expectations.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUnderwater Wireless Sensor Networksen_US
dc.subjectSimulationen_US
dc.subjectRobust Optimizationen_US
dc.subjectNetwork Lifetimeen_US
dc.subjectEvent-Driven Networken_US
dc.subjectTraffic Uncertaintyen_US
dc.titleA Simulation-Informed Robust Optimization Framework for the Design of Energy Efficient Underwater Sensor Networksen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume178en_US
dc.identifier.wosWOS:001513606300002-
dc.identifier.scopus2-s2.0-105008199136-
dc.identifier.doi10.1016/j.adhoc.2025.103933-
dc.authorscopusid59946737500-
dc.authorscopusid16066641700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.