Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaradaş, F.-
dc.contributor.authorEravcı, B.-
dc.contributor.authorÖzbayoğlu, A.M.-
dc.date.accessioned2025-05-10T19:34:55Z-
dc.date.available2025-05-10T19:34:55Z-
dc.date.issued2025-
dc.identifier.issn2184-3589-
dc.identifier.urihttps://doi.org/10.5220/0013174500003890-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12492-
dc.description.abstractIn an era where financial markets are heavily influenced by many static and dynamic factors, it has become increasingly critical to carefully integrate diverse data sources with machine learning for accurate stock price prediction. This paper explores a multimodal machine learning approach for stock price prediction by combining data from diverse sources, including traditional financial metrics, tweets, and news articles. We capture real-time market dynamics and investor mood through sentiment analysis on these textual data using both ChatGPT-4o and FinBERT models. We look at how these integrated data streams augment predictions made with a standard Long Short-Term Memory (LSTM model) to illustrate the extent of performance gains. Our study's results indicate that incorporating the mentioned data sources considerably increases the forecast effectiveness of the reference model by up to 5%. We also provide insights into the individual and combined predictive capacities of these modalities, highlighting the substantial impact of incorporating sentiment analysis from tweets and news articles. This research offers a systematic and effective framework for applying multimodal data analytics techniques in financial time series forecasting that provides a new perspective for investors to leverage data for decision-making. © 2025 by SCITEPRESS – Science and Technology Publications, Lda.en_US
dc.language.isoenen_US
dc.publisherScience and Technology Publications, Ldaen_US
dc.relation.ispartofInternational Conference on Agents and Artificial Intelligence -- 17th International Conference on Agents and Artificial Intelligence, ICAART 2025 -- 23 February 2025 through 25 February 2025 -- Porto -- 328949en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectDeep Neural Networksen_US
dc.subjectFinancial Forecastingen_US
dc.subjectLarge Language Modelsen_US
dc.subjectMultimodal Machine Learningen_US
dc.subjectStock Market Predictionen_US
dc.titleMultimodal Stock Price Predictionen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume3en_US
dc.identifier.startpage687en_US
dc.identifier.endpage694en_US
dc.identifier.scopus2-s2.0-105001934606-
dc.identifier.doi10.5220/0013174500003890-
dc.authorscopusid59637874300-
dc.authorscopusid43260940300-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.