Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12427
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeleş, K.E.-
dc.contributor.authorGürbüz, Ö.K.-
dc.contributor.authorKutlu, M.-
dc.date.accessioned2025-04-11T19:52:24Z-
dc.date.available2025-04-11T19:52:24Z-
dc.date.issued2025-
dc.identifier.isbn9798891762053-
dc.identifier.issn2951-2093-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12427-
dc.description.abstractPotential harms of Large Language Models such as mass misinformation and plagiarism can be partially mitigated if there exists a reliable way to detect machine generated text. In this paper, we propose a new watermarking method to detect machine-generated texts. Our method embeds a unique pattern within the generated text, ensuring that while the content remains coherent and natural to human readers, it carries distinct markers that can be identified algorithmically. Specifically, we intervene with the token sampling process in a way which enables us to trace back our token choices during the detection phase. We show how watermarking affects textual quality and compare our proposed method with a state-of-the-art watermarking method in terms of robustness and detectability. Through extensive experiments, we demonstrate the effectiveness of our watermarking scheme in distinguishing between watermarked and non-watermarked text, achieving high detection rates while maintaining textual quality. © 2025 International Conference on Computational Linguistics.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.relation.ispartofProceedings - International Conference on Computational Linguistics, COLING -- 1st Workshop on GenAI Content Detection, GenAIDetect 2025 -- 19 January 2025 -- Abu Dhabi -- 207333en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleI Know You Did Not Write That! a Sampling Based Watermarking Method for Identifying Machine Generated Texten_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage140en_US
dc.identifier.endpage149en_US
dc.identifier.scopus2-s2.0-105000154836-
dc.authorscopusid58770155500-
dc.authorscopusid58770450500-
dc.authorscopusid35299304300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

4
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.