Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12426
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeleş, K.E.-
dc.contributor.authorKutlu, M.-
dc.date.accessioned2025-04-11T19:52:24Z-
dc.date.available2025-04-11T19:52:24Z-
dc.date.issued2025-
dc.identifier.isbn9798891762053-
dc.identifier.issn2951-2093-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12426-
dc.description.abstractThis paper details our methods for addressing Task 1 of the GenAI Content Detection shared tasks, which focus on distinguishing AI-generated text from human-written content. The task comprises two subtasks: Subtask A, centered on English-only datasets, and Subtask B, which extends the challenge to multilingual data. Our approach uses a fine-tuned XLM-RoBERTa model for classification, complemented by features including perplexity and TF-IDF. While perplexity is commonly regarded as a useful indicator for identifying machine-generated text, our findings suggest its limitations in multi-model and multilingual contexts. Our approach ranked 6th in Subtask A, but a submission issue left our Subtask B unranked, where it would have placed 23rd. © 2025 International Conference on Computational Linguistics.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.relation.ispartofProceedings - International Conference on Computational Linguistics, COLING -- 1st Workshop on GenAI Content Detection, GenAIDetect 2025 -- 19 January 2025 -- Abu Dhabi -- 207333en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTurquaz at Genai Detection Task 1: Dr. Perplexity Or: How I Learned To Stop Worrying and Love the Finetuningen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage225en_US
dc.identifier.endpage229en_US
dc.identifier.scopus2-s2.0-105000198483-
dc.authorscopusid58770155500-
dc.authorscopusid35299304300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

4
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.