Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12425
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChowdhury, S.A.-
dc.contributor.authorAlmerekhi, H.-
dc.contributor.authorKutlu, M.-
dc.contributor.authorKeleş, K.E.-
dc.contributor.authorAhmad, F.-
dc.contributor.authorMohiuddin, T.-
dc.contributor.authorAlam, F.-
dc.date.accessioned2025-04-11T19:52:24Z-
dc.date.available2025-04-11T19:52:24Z-
dc.date.issued2025-
dc.identifier.isbn9798891762053-
dc.identifier.issn2951-2093-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12425-
dc.description.abstractThis paper presents a comprehensive overview of the first edition of the Academic Essay Authenticity Challenge, organized as part of the GenAI Content Detection shared tasks collocated with COLING 2025. This challenge focuses on detecting machine-generated vs human-authored essays for academic purposes. The task is defined as follows: “Given an essay, identify whether it is generated by a machine or authored by a human.” The challenge involves two languages: English and Arabic. During the evaluation phase, 25 teams submitted systems for English and 21 teams for Arabic, reflecting substantial interest in the task. Finally, five teams submitted system description papers. The majority of submissions utilized fine-tuned transformer-based models, with one team employing Large Language Models (LLMs) such as Llama 2 and Llama 3. This paper outlines the task formulation, details the dataset construction process, and explains the evaluation framework. Additionally, we present a summary of the approaches adopted by participating teams. Nearly all submitted systems outperformed the n-gram-based baseline, with the top-performing systems achieving F1 scores exceeding 0.98 for both languages, indicating significant progress in the detection of machine-generated text. © 2025 International Conference on Computational Linguistics.en_US
dc.description.sponsorshipHamad Bin Khalifa University, HBKU, (HBKU-OVPRSRG-02-2); Hamad Bin Khalifa University, HBKUen_US
dc.language.isoenen_US
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.relation.ispartofProceedings - International Conference on Computational Linguistics, COLING -- 1st Workshop on GenAI Content Detection, GenAIDetect 2025 -- 19 January 2025 -- Abu Dhabi -- 207333en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleGenai Content Detection Task 2: Ai Vs. Human - Academic Essay Authenticity Challengeen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage323en_US
dc.identifier.endpage333en_US
dc.identifier.scopus2-s2.0-105000186337-
dc.authorscopusid56413996000-
dc.authorscopusid55498233200-
dc.authorscopusid35299304300-
dc.authorscopusid58770155500-
dc.authorscopusid58886859200-
dc.authorscopusid59402854900-
dc.authorscopusid14018356300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

4
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.