Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12425
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chowdhury, S.A. | - |
dc.contributor.author | Almerekhi, H. | - |
dc.contributor.author | Kutlu, M. | - |
dc.contributor.author | Keleş, K.E. | - |
dc.contributor.author | Ahmad, F. | - |
dc.contributor.author | Mohiuddin, T. | - |
dc.contributor.author | Alam, F. | - |
dc.date.accessioned | 2025-04-11T19:52:24Z | - |
dc.date.available | 2025-04-11T19:52:24Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 9798891762053 | - |
dc.identifier.issn | 2951-2093 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/12425 | - |
dc.description.abstract | This paper presents a comprehensive overview of the first edition of the Academic Essay Authenticity Challenge, organized as part of the GenAI Content Detection shared tasks collocated with COLING 2025. This challenge focuses on detecting machine-generated vs human-authored essays for academic purposes. The task is defined as follows: “Given an essay, identify whether it is generated by a machine or authored by a human.” The challenge involves two languages: English and Arabic. During the evaluation phase, 25 teams submitted systems for English and 21 teams for Arabic, reflecting substantial interest in the task. Finally, five teams submitted system description papers. The majority of submissions utilized fine-tuned transformer-based models, with one team employing Large Language Models (LLMs) such as Llama 2 and Llama 3. This paper outlines the task formulation, details the dataset construction process, and explains the evaluation framework. Additionally, we present a summary of the approaches adopted by participating teams. Nearly all submitted systems outperformed the n-gram-based baseline, with the top-performing systems achieving F1 scores exceeding 0.98 for both languages, indicating significant progress in the detection of machine-generated text. © 2025 International Conference on Computational Linguistics. | en_US |
dc.description.sponsorship | Hamad Bin Khalifa University, HBKU, (HBKU-OVPRSRG-02-2); Hamad Bin Khalifa University, HBKU | en_US |
dc.language.iso | en | en_US |
dc.publisher | Association for Computational Linguistics (ACL) | en_US |
dc.relation.ispartof | Proceedings - International Conference on Computational Linguistics, COLING -- 1st Workshop on GenAI Content Detection, GenAIDetect 2025 -- 19 January 2025 -- Abu Dhabi -- 207333 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Genai Content Detection Task 2: Ai Vs. Human - Academic Essay Authenticity Challenge | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.startpage | 323 | en_US |
dc.identifier.endpage | 333 | en_US |
dc.identifier.scopus | 2-s2.0-105000186337 | - |
dc.authorscopusid | 56413996000 | - |
dc.authorscopusid | 55498233200 | - |
dc.authorscopusid | 35299304300 | - |
dc.authorscopusid | 58770155500 | - |
dc.authorscopusid | 58886859200 | - |
dc.authorscopusid | 59402854900 | - |
dc.authorscopusid | 14018356300 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.