Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaydemir, P.-
dc.contributor.authorMerdan, H.-
dc.date.accessioned2025-04-11T19:52:22Z-
dc.date.available2025-04-11T19:52:22Z-
dc.date.issued2025-
dc.identifier.issn0960-0779-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2025.116317-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12418-
dc.description.abstractIn this paper, we analyze the complex dynamics of a discrete-time, Leslie-type predator–prey system that exhibits a weak Allee effect where the prey population has a mate-finding Allee effect. This discrete mathematical model has been obtained by applying the forward Euler scheme to its continuous-time counterpart. First, stability and bifurcation analyses are performed to explore the stability of positive equilibrium points and to identify critical points where dynamic behavioral transitions occur. Then, center manifold theory and normal form theory are used to classify bifurcations, including Flip bifurcation and Neimark–Sacker bifurcation, revealing the emergence of chaos and periodic orbits in the system by choosing integral step size as a bifurcation parameter. Specifically, numerical examples are presented to illustrate and support the theoretical results, thereby demonstrating the practical application of the theory. Next, we implement chaos control strategies, namely the feedback control method, to control chaotic dynamics. In addition, we apply the FAST method to improve the efficiency of our numerical simulations, allowing a more detailed exploration of the parameter space. Our results contribute to a better understanding of ecological interactions under the influence of the Allee effect and provide valuable insights for biodiversity management in predator–prey systems, especially for endangered populations. © 2025 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAllee Effecten_US
dc.subjectBifurcation Analysisen_US
dc.subjectChaos Controlen_US
dc.subjectFast Methoden_US
dc.subjectSensitivity Analysisen_US
dc.subjectStability Analysisen_US
dc.titleBifurcation Analysis, Chaos Control, and Fast Approach for the Complex Dynamics of a Discrete-Time Predator–prey System With a Weak Allee Effecten_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume196en_US
dc.identifier.scopus2-s2.0-105000892371-
dc.identifier.doi10.1016/j.chaos.2025.116317-
dc.authorscopusid57218940520-
dc.authorscopusid6508264521-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.