Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKosasih, A.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorBjörnson, E.-
dc.date.accessioned2025-04-11T19:51:30Z-
dc.date.available2025-04-11T19:51:30Z-
dc.date.issued2024-
dc.identifier.isbn9798350351255-
dc.identifier.issn2334-0983-
dc.identifier.urihttps://doi.org/10.1109/GLOBECOM52923.2024.10901086-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12404-
dc.description.abstractA reconfigurable intelligent surface (RIS) alters the reflection of incoming signals based on the phase-shift configuration assigned to its elements. This feature can be used to improve the signal strength for user equipments (UEs), expand coverage, and enhance spectral efficiency in wideband communication systems. Having accurate channel state information (CSI) is indispensable to realize the full potential of RIS-aided wideband systems. Unfortunately, CSI is challenging to acquire due to the passive nature of the RIS elements, which cannot perform transmit/receive signal processing. Recently, a parametric maximum likelihood (ML) channel estimator has been developed and demonstrated excellent estimation accuracy. However, this estimator is designed for narrowband systems with no non- line-of-sight (NLOS) paths. In this paper, we develop a novel parametric ML channel estimator for RIS-assisted wideband systems, which can handle line-of-sight (LOS) paths in the base station (BS)-RIS and RIS-UE links as well as NLOS paths between the UE, BS, and RIS. We leverage the reduced subspace representation induced by the array geometry to suppress noise in unused dimensions, enabling accurate estimation of the NLOS paths. Our proposed algorithm demonstrates superior estimation performance for the BS-UE and RIS-UE channels, outperforming the existing ML channel estimator. © 2024 IEEE.en_US
dc.description.sponsorshipStiftelsen för Strategisk Forskning, SSFen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - IEEE Global Communications Conference, GLOBECOM -- 2024 IEEE Global Communications Conference, GLOBECOM 2024 -- 8 December 2024 through 12 December 2024 -- Cape Town -- 207545en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMaximum Likelihooden_US
dc.subjectParametric Channel Estimationen_US
dc.subjectReduced Subspaceen_US
dc.subjectRisen_US
dc.subjectWideband Channel Estimationen_US
dc.titleParametric Channel Estimation for Ris-Assisted Wideband Systemsen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage2876en_US
dc.identifier.endpage2881en_US
dc.identifier.scopus2-s2.0-105000822307-
dc.identifier.doi10.1109/GLOBECOM52923.2024.10901086-
dc.authorscopusid57202575500-
dc.authorscopusid55807906700-
dc.authorscopusid24478602800-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.