Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzkan, Cagla-
dc.contributor.authorInan, Tolga-
dc.contributor.authorBaykal, Yahya-
dc.date.accessioned2025-04-11T19:50:13Z-
dc.date.available2025-04-11T19:50:13Z-
dc.date.issued2025-
dc.identifier.issn0031-8949-
dc.identifier.issn1402-4896-
dc.identifier.urihttps://doi.org/10.1088/1402-4896/adbd7f-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12386-
dc.descriptionBaykal, Yahya/0000-0002-4897-0474; Ozkan, Cagla/0009-0003-2188-6314; Inan, Tolga/0000-0002-8612-122Xen_US
dc.description.abstractOptical Camera Communication (OCC) utilizes image sensors to decode modulated light signals from light-emitting diodes (LEDs), offering a cost-effective solution for wireless communication. However, data extraction in non-line-of-sight (NLOS) conditions is challenging due to signal distortions caused by obstacles and reflections. Traditional segmentation techniques, such as Otsu's thresholding and adaptive thresholding, are computationally efficient but struggle with lighting variations, background interference, and high-frequency distortions, limiting their effectiveness in real-world OCC applications. To address these limitations, we propose a U-Net convolutional neural network, trained on a diverse dataset covering various camera distances, lighting conditions, and reflection levels to improve segmentation accuracy. The proposed model achieves up to 25% BER improvement, outperforming traditional thresholding methods and ensuring more reliable bit extraction in challenging OCC environments. These advancements make deep learning a promising approach for improving OCC applications such as indoor positioning, smart transportation, and secure optical wireless communication.en_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOptical Camera Communicationsen_US
dc.subjectNon Line Of Sighten_US
dc.subjectLeden_US
dc.titleBit Segmentation of Non-Line of Sight Data in Optical Camera Communication Using U-Neten_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume100en_US
dc.identifier.issue4en_US
dc.authoridBaykal, Yahya/0000-0002-4897-0474-
dc.authoridOzkan, Cagla/0009-0003-2188-6314-
dc.authoridInan, Tolga/0000-0002-8612-122X-
dc.identifier.wosWOS:001447784600001-
dc.identifier.scopus2-s2.0-105000326491-
dc.identifier.doi10.1088/1402-4896/adbd7f-
dc.authorwosidInan, Tolga/Aac-9776-2019-
dc.authorscopusid59698310700-
dc.authorscopusid59697893300-
dc.authorscopusid7004576489-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

4
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.