Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12224
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErsanlı, Didem-
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2025-04-01T14:43:36Z-
dc.date.available2025-04-01T14:43:36Z-
dc.date.issued2023-
dc.identifier.urihttp://beyond2023.etu.edu.tr/Beyond_BookofAbstract.pdf-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12224-
dc.descriptionThe 3rd BEYOND 2023: Computational Science, Mathematical Modeling and Engineering Conference TOBB University of Economics and Technology, Ankara-Turkey, 19-20 October 2023en_US
dc.description.abstractIn this presentation, we present a new analogue of the Filbert and Lilbert matrices whose indices have different asymmetric and nonlinear rules according to their row numbers. Explicit formula are derived for the LU-decompositions, their inverses and the inverse of the main matrix as well as its determinant. To prove the claimed results we use backward induction method. The asymmetric variants of the Filbert and Lilbert matrices are obtained from our results for a particular q value.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFilbert matrixen_US
dc.subjectLilbert matrixen_US
dc.subjectq-analogueen_US
dc.subjectLU-decompositionen_US
dc.subjectinverse matrixen_US
dc.subjectdeterminanten_US
dc.titleA Kind of Asymmetric and Nonlinear Matrix and Its Algebraic Propertiesen_US
dc.typeConference Objecten_US
dc.identifier.startpage21en_US
dc.identifier.endpage21en_US
dc.authorid0000-0003-0722-7382-
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Show simple item record



CORE Recommender

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.