Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12166
Title: | Denetimli Makine Öğrenmesi Tekniklerini Kullanarak Finansal Bilgi Manipülasyonunun Tespiti: Svm, Pnn, Knn, Dt | Authors: | Aydın, Osman Musa Aktaş, Ramazan |
Keywords: | İktisat İşletme Finans |
Abstract: | Bu çalışma kapsamında, finansal bilgi manipülasyonunu tahmin etmek için geleneksel tahmin algoritmaları ve denetimli makine öğrenmesi yöntemleri kullanılmaktadır. Geleneksel tahmin algoritması olarak logit kullanılırken, denetimli makine öğrenmesi yöntemlerinden destek vektör makinesi (SVM), olasılıksal sinir ağı (PNN), k-en yakın komşu (KNN) ve karar ağacı (DT) algoritmaları kullanılmıştır. Önceki çalışmalara göre, destek vektör makinesi ve olasılıksal sinir ağı algoritmaları geleneksel tahmin algoritmalarından finansal bilgi manipülasyonunu doğru olarak tespit etmekte daha yüksek performans göstermektedir. Sermaye Piyasası Kurulu'nun ve Borsa İstanbul’un 2009-2018 yılları arasındaki haftalık bültenlerini gözden geçirerek toplanan verilere tüm algoritmalar ayrı ayrı uygulanmıştır. Hangi algoritmanın finansal bilgi manipülasyonunu tespitinde daha başarılı olduğuna karar vermek amacıyla karşılaştırmalı analiz yapılmıştır. Karşılaştırmalı analizde, algoritmaların duyarlılık ve özgünlük istatistiklerinin performansına bakılmıştır. Elde edilen sonuçlar, KNN ve SVM’nin diğer algoritmalardan daha iyi performansa sahip olduğunu ve kullanılan tüm algoritmaların önceki literatürün sonuçlarına kıyasla yüksek performansa sahip olduğunu göstermektedir. | URI: | https://doi.org/ulikidince.748742 [TRDIZIN-Document Link-BELIRLENECEK-12] https://hdl.handle.net/20.500.11851/12166 |
ISSN: | 1307-9832 1307-9859 |
Appears in Collections: | TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.