Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOğuz, T.-
dc.contributor.authorAkgün, T.-
dc.date.accessioned2025-03-22T20:56:06Z-
dc.date.available2025-03-22T20:56:06Z-
dc.date.issued2025-
dc.identifier.isbn9781510682689-
dc.identifier.issn0277-786X-
dc.identifier.urihttps://doi.org/10.1117/12.3041825-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12148-
dc.descriptionTaiwan Space Agency (TASA); The Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.description.abstractSatellites and high-altitude unmanned aerial vehicles are the top platforms for electro-optical remote sensing for both civilian and military applications. Since early 2000s high altitude electro-optical remote sensing platforms have been actively used for real-time and offline damage assessment following natural disasters such as earthquakes, floods, and landslides. High accuracy, multi-class automated object segmentation is one of the key processing blocks that makes such applications practical. Given the typical distances between target areas and high-altitude sensing platforms (10s to 1000s of kms) as well as the critical nature of the resulting assessments, the accuracy of segmentation maps is of key interest. In this work we present the Multi-Class Certainty Mapped Network (MCCM-Net) that uses multi-class per-pixel uncertainty to enhance segmentation performance. MCCM-Net explicitly models multi-class uncertainty as the entropy of class probability distribution. Pixel-level uncertainty is then used to iteratively enhance segmentation maps. Our experiments on publicly available benchmark datasets show that MCCM-Net provides state-of-the-art multi-class pixel-level segmentation performance. © 2025 SPIE.en_US
dc.description.sponsorshipTÜBITAK 1501”Design and Development of Edge AI Image Processing Systems for Defense-Oriented Satellites; Savunma Odaklı Uydular ve Insansız Hava Araçları için Uç Nokta Yapay Zeka Görüntü Degerlendirme Sistemi Tasarımı ve Geliştirilmesi, (3240136)en_US
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering -- Land Surface and Cryosphere Remote Sensing V 2024 -- 2 December 2024 through 4 December 2024 -- Kaohsiung -- 206336en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDamage Assessmenten_US
dc.subjectDeep Learningen_US
dc.subjectHigh-Altitude Imageryen_US
dc.subjectNatural Disasteren_US
dc.subjectSegmentationen_US
dc.subjectUncertainty Awareen_US
dc.titleMulti-Class Certainty Mapped Network for High Precision Segmentation of High-Altitude Imageryen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume13263en_US
dc.identifier.scopus2-s2.0-85216933708-
dc.identifier.doi10.1117/12.3041825-
dc.authorscopusid59542603700-
dc.authorscopusid9273895500-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept02.3. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

10
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.