Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, S.-
dc.contributor.authorCai, T.-
dc.contributor.authorDemir, O.T.-
dc.contributor.authorCavdar, C.-
dc.date.accessioned2025-03-22T20:56:05Z-
dc.date.available2025-03-22T20:56:05Z-
dc.date.issued2025-
dc.identifier.issn0018-9545-
dc.identifier.urihttps://doi.org/10.1109/TVT.2025.3541136-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12145-
dc.description.abstractIn this paper, we focus on minimizing the total energy consumption of multi-cell massive multiple-input multiple-output (MIMO) networks while simultaneously guaranteeing user quality of service (QoS). This is achieved by optimizing the multi-level advanced sleep modes (ASM), antenna switching, and user association of the base stations (BSs). Due to the interdependence of user association and inter-cell interference in the network, collaborative efforts among individual BSs become imperative. The problem is modeled as a decentralized partially observable Markov decision process (DEC-POMDP) and a multi-agent proximal policy optimization (MAPPO) algorithm is proposed to obtain a collaborative BS control policy. Simulation results demonstrate that the obtained policy can significantly improve network energy efficiency, adaptively switch the BSs into different depths of sleep, reduce inter-cell interference, and maintain good QoS compared to the two benchmark algorithms. The results also validate that enabling user offloading among BSs can improve both user QoS and system performance. The superiority of MAPPO is further affirmed by comparing it with the single-agent deep Q network (DQN) algorithm. © 1967-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Vehicular Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAntenna Switchingen_US
dc.subjectBase Station Control For Energy Savingsen_US
dc.subjectGreen Networksen_US
dc.subjectMassive Mimoen_US
dc.subjectMulti-Agent Reinforcement Learningen_US
dc.titleMulti-Agent Rl for Sleep Mode and Antenna Configuration With User Offloading Under Dynamic Traffic in Massive Mimo Networksen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-85217894312-
dc.identifier.doi10.1109/TVT.2025.3541136-
dc.authorscopusid57192184029-
dc.authorscopusid58726118000-
dc.authorscopusid55807906700-
dc.authorscopusid24178594900-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.