Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12139
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkgün, H.I.-
dc.contributor.authorÖzbayoǧlu, A.M.-
dc.date.accessioned2025-03-22T20:56:05Z-
dc.date.available2025-03-22T20:56:05Z-
dc.date.issued2024-
dc.identifier.isbn9798350362480-
dc.identifier.urihttps://doi.org/10.1109/BigData62323.2024.10825870-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12139-
dc.descriptionAnkura; IEEE Computer Society; IEEE Dataport; U.S. National Science Foundation (NSF); Virginia Techen_US
dc.description.abstractThe stock market is influenced by various factors such as national policies, economic conditions, and global events. Accurately predicting stock price changes has long been a critical challenge for investors and economists, as it can significantly reduce investment risks. Accurate forecasts can enhance investment strategies, allowing for maximized returns. However, the volatile and non-linear nature of financial markets makes this task particularly complex. Recently state space models, like Mamba, have shown promising results in sequence modeling. In this work, we apply Mamba to predict the percentage changes in daily stock closing prices. By forecasting these changes, we frame the problem as a classification task, where the goal is to determine whether the stock price will increase or not. By training models with different hyperparameters and combining them through ensemble learning, the prediction accuracy is further improved. To evaluate the model, we analyze stock movements over a series of trading days for six Nasdaq-listed companies. Our model demonstrates notable performance, achieving an average F1 score of 60.5% in predicting the direction of next-day price movement. The model generated an average profit of $4150 over 120 test transaction days with an initial capital of $10,000. These insights can help investors make more informed decisions, optimizing returns while minimizing risks. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 2024 IEEE International Conference on Big Data, BigData 2024 -- 2024 IEEE International Conference on Big Data, BigData 2024 -- 15 December 2024 through 18 December 2024 -- Washington -- 206131en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectMambaen_US
dc.subjectState Space Modelen_US
dc.subjectStock Movement Predictionen_US
dc.subjectTime Series Predictionen_US
dc.titleStock Movement Prediction Using Mamba and Ensemble Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage6894en_US
dc.identifier.endpage6903en_US
dc.identifier.scopus2-s2.0-85218050765-
dc.identifier.doi10.1109/BigData62323.2024.10825870-
dc.authorscopusid59558867700-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.