Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkgun, H.I.-
dc.contributor.authorOzbayoglu, A.M.-
dc.date.accessioned2025-03-22T20:56:05Z-
dc.date.available2025-03-22T20:56:05Z-
dc.date.issued2024-
dc.identifier.isbn9798331518035-
dc.identifier.urihttps://doi.org/10.1109/ELECO64362.2024.10847128-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12138-
dc.description.abstractThe prices in the stock market constantly fluctuate due to the influence of internal and external dynamics. For investors, predicting these movements can provide a significant advantage. Accurately forecasting stock prices is crucial for both reducing investment risks and increasing returns, while preventing financial losses. However, the volatile and complex nature of financial markets makes this process challenging. Recently, models like Mamba, based on state space models, have delivered effective results in sequence modelling. In this study, the goal was to predict stock closing prices using the Mamba model. The model's performance was evaluated on the prices of six companies listed on the Nasdaq. Mamba demonstrated better performance with lower error rates compared to our baseline models, MLP and LSTM. These results may help investors reduce risks and make more informed decisions. © 2024 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofElectrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings -- 2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024 -- 28 November 2024 through 30 November 2024 -- Bursa -- 206315en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleStock Price Prediction Using Mambaen_US
dc.title.alternativeMamba İle Hisse Senedi Fiyat Tahminien_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-85217872875-
dc.identifier.doi10.1109/ELECO64362.2024.10847128-
dc.authorscopusid59558867700-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.